
( HPSC 5576 ELIZABETH JESSUP ) 

HIGH PERFORMANCE SCIENTIFIC COMPUTING 

 :: Homework / 14 

 :: Student / Florian Rappl 

1 problem / 10 points 

  



HPSC5576 Florian Rappl HW|14 

 

2 

OpenMP Performance 

References: 

http://openmp.org/wp/ 

The following is a tutorial on how to use OpenMP. 

https://computing.llnl.gov/tutorials/openMP/ 

The following is the section of the tutorial that contains examples similar to the task assigned in this 

lab. 

https://computing.llnl.gov/tutorials/openMP/#Combined 

References: 

 http://icl.cs.utk.edu/hpcc/ 

 http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html#_What_is_HPL? 

 http://netlib.org/utk/people/JackDongarra/PAPERS/hplpaper.pdf 

Procedure: 

1. Run the serial code provided below using the compile line also below to establish a baseline on 

your test machine. Compile using 

gcc -O3 -fopenmp matmat.c 

2. Create and test a parallel version of the code using the OpenMP Sections directive. (#pragma 

omp sections). Note that doing so implicitly hardcodes the number of threads; make sure to 

divide the work. 

3. Create a parallel version of the code using the OpenMP for directive (#pragma omp for 

schedule) with ordering not enforced. Choose one of the following schedule options to test: 

static, dynamic, guided, or auto (version 3.0 requires gcc 4.3.1 or better). 

4. Test this parallel version for 1 thread, 2 threads, 4 threads, and so on for a few choices, up to the 

number of cores in the node you are working on. (You don’t have to do all powers of two. If you 

are on Blacklight, consider using two nodes -- it’s a shared-memory architecture!) 

On Trestles you can go into interactive node mode via: 

qsub -I -q normal -l walltime=1:00:00 -l nodes=1 

Solutions 

Task: 

Write a paragraph or two (or explain to an instructor) analyzing your results.  Include in this analysis a 

compare and contrast of why different codes performed as they did and any parameters you used 

that might have influenced the performance of your code. 

http://openmp.org/wp/
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/#Combined
http://icl.cs.utk.edu/hpcc/
http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html#_What_is_HPL
http://netlib.org/utk/people/JackDongarra/PAPERS/hplpaper.pdf


HPSC5576 Florian Rappl HW|14 

 

3 

Answer: 

The Sections code did already show a speedup by splitting up the two calculations into two threads. 

However starting threads takes some time as seen in Np=1. We have to admit that we will roughly 

lose ~a second by starting the thread. We can therefore see a roughly linear speedup from 1 to 4 

threads when we take into consideration that some thread startup takes some time and that the 

shared memory handling has some price as well. After a certain number of threads we do not profit 

any more since the problem seems to be too small (thread starting time bigger than solving time). 

 Serial Sections Np=1 (dynamic) Np=2 (dynamic) Np=4 (dynamic) 
Np=16* 

(dynamic) 

Runtime (s) 5.388934 4.657954 9.176876 5.716748 3.869767 2.672197 

MFlops** 3188 3688 1872 3005 4440 6429 

Speedup 1 1.16 0.59 0.94 1.39 2.02 

* 16 and 32 had the same result. I guess the matrix was not sized big enough for 32 threads to be more efficient than 16 threads. 

** calculated over           (2 times the matrix calculation with 8 operations per iteration in 3 for loops with 1024 iterations each. 

I worked with the following code: 

#include <stdio.h> 

#include <sys/time.h> 

#include <sys/types.h> 

#include <stdlib.h> 

double calctime(struct timeval start, struct timeval end) { 

 double time; 

 time = end.tv_usec - start.tv_usec; 

 time = time/1000000; 

 time += end.tv_sec - start.tv_sec; 

 return time; 

} 

void main() { 

 int i, j, k, n = 1024; 

 double *A, *B, *C, time; 

 struct timeval start; 

 struct timeval end; 

 A = malloc(n*n*sizeof(double)); 

 B = malloc(n*n*sizeof(double)); 

 C = malloc(n*n*sizeof(double)); 

 for(i = 0; i < n; i++) 

  for(j = 0; j < n; j++) 

  {   

   A[i*n + j] = 0.0; 

   B[i*n + j] = i + j*n; 

   C[i*n + j] = i*n + j; 

  } 

 gettimeofday(&start, NULL); 

 for (i = 0; i <n; i++) 

  for(j = 0; j < n; j++) 

   for(k = 0; k < n; k++) 

    A[i*n + j] += B[i*n + k] * C[j*n + k]; 

 for (i = 0; i <n; i++) 

  for(j = 0; j < n; j++) 

   for(k = 0; k < n; k++) 

    A[i*n + j] += B[i*n + k] * C[j*n + k]; 

 gettimeofday(&end, NULL); 

 time = calctime(start, end); 

 printf("mat-mat time: %lf\n", time); 

} 

Start of Block to parallelize 

Speed differences in the usage of sections and for 

schedule are by done by the different declarations 

of private and shared. We have to take two main 

thoughts into consideration: i.) do both have to 

work on the variable on the same time (shared 

required) and ii.) do both just need to work with a 

copy of it (private would be better). This is 

somehow architecture dependent because some 

CPU have a shared memory as well as own core 

memory – therefore private might speed up while 

shared might slow down – this means we should 

only use shared if shared is really required. 


