
(HPSC 5576 ELIZABETH JESSUP)

HIGH PERFORMANCE SCIENTIFIC COMPUTING

 :: Homework / 8

 :: Student / Florian Rappl

1 problem / 10 points

HPSC5576 Florian Rappl HW|8

2

Problem 1

Task:

Write a short program demonstrating the use of MPE's profiling interface, 10 pts

Use MPE directives to instrument your implementation of MPI_Allreduce from the Week 3

homework. Create custom regions for the following phases of your program, if applicable:

 Memory (malloc calls, if used)

 Communication (send/receive regions)

 Computation (loops summing vectors)

Compile and link using MPE including the library that logs the transmission of all MPI messages. (In

your resulting MPE plots, you should see your colored regions, colored regions for MPI calls, and

arrows for messages.)

In the week 3 homework, you were asked to test low-to-high and high-to-low bit traversals. You may

just choose one here. If you run on a remote system and scp the .clog* file to your laptop, you will

need to find the visualization toolkit of the same version to be able to open the log file for analysis.

The SLOG SDK releases are at: ftp://ftp.mcs.anl.gov/pub/mpi/slog2/

The version on Frost uses an intermediate build. If you run on Frost, you'll need the full MPE source

containing the matching SLOG SDK: ftp://ftp.mcs.anl.gov/pub/mpi/mpe/mpe2-1.0.4.tar.gz

Solution:

I did use Frost again in order to simplify the comparison process with my former implementation. I

used the [L->H] (Low to High) bit traversal. To include MPE in my project I had to do the following:

include flags -I /contrib/bgl/mpe2/include

link flags -L /contrib/bgl/mpe2/lib -llmpe –lmpe

Therefore I compiled it using the following two commands:

mpixlc -g -I /contrib/bgl/mpe2/include -c -o allmpe.o all_mpe.c

mpixlc -o all_mpe allmpe.o -g -L /contrib/bgl/mpe2/lib -llmpe –lmpe

In order to distinguish between with and without MPE I built in another command line argument,

which sets a bit flag to 1 if detected. The MPE commands will only be executed if the flag is at 0. For

evaluating the *.clog2 files I used Jumpshot-4.

Question:

Run your Allreduce() routine for two data sizes -- 8 doubles, and 1MB worth of doubles -- on 8 or 16

cores. Produce MPE plots showing the behavior of the program for both reduction operations. Can

you identify the butterfly structure of the communication in the MPE plots?

ftp://ftp.mcs.anl.gov/pub/mpi/slog2/
ftp://ftp.mcs.anl.gov/pub/mpi/mpe/mpe2-1.0.4.tar.gz

HPSC5576 Florian Rappl HW|8

3

Answer:

Fig. 1 Measurement with 16 processors and 131072 doubles (1 MB) running one iteration

This plot shows 16 processors performing the Allreduce() function (one time). The Butterfly topology

is here perfectly visible (and the disadvantage of the Butterfly on the BlueGene). We see that first

only next neighbor communication is performed, therefore all arriving at the same time. After that

first blue line we see that communication takes longer for 1-3, 4-6 etc. whereas the communication

for the others like 0-2, 5-7 etc. is as short as in the previous phase. This is obviously one of the

features of BlueGene’s Torus topology, with is not optimized for Butterfly (better said Butterfly is not

optimized for the Torus) and therefore produces contention on the wires in this phase. The 3rd phase

offers again quite short times. Therefore we cannot do any conclusions here only that this phase is

better optimized for the Butterfly topology than the previous and the next one. But in the fourth

phase we see that obviously the ends are communicating, i.e. those are being slower due to

contention on the wires.

Note 1: I used the first iteration for this plot. The other plots have a smaller memory time-block, which is nearly

as small as a computation time-block.

Note 2: With arrow activated for the messages the butterfly structure is even easier to see. However in my

opinion the white-arrows are quite hard to see on a printout. I’ve included screenshots in the *.tar.zip file.

The next plot shows the same (first) iteration with less data, i.e. just 8 doubles. We recognize a lot of

black regions, which are obviously something like idle time but only in sense of MPE not knowing

what to log. I suppose those things are due to the case selections, i.e. the “if” statements enabling or

disabling MPE, and the MPE calls (to get an event ID using MPE_Log_get_event_number()). Since the

time scale on this plot is much smaller we can now see those regions whereas in the plot before we

could not.

Legend

Memory

Communication

Computation

Idle

0.00 Time in seconds 0.06

1
5

R
an

k
o

f
p

ro
ce

ss
o

r

 0

Parameters
np = 16
nd = 131,072
ni = 16
i = 1st

HPSC5576 Florian Rappl HW|8

4

Fig. 2 Measurement with 16 processors and 8 doubles running one iteration

Another interesting thing is the shift of process number 0 (the master process). This shift is due to

the MPE_Describe_state() function calls. Therefore we can clearly see what impact MPE already has

on our program. We can also see that this impact is not scaling, since we did not observe such black

areas in the plot before (not because they were not there but just because the time scaling was

higher and therefore the region too small). Again we can see the butterfly but it is much harder to

see when the message size is very small and only latency (which is kind of constant) plays a role. We

only observe that all the receive partners from process 0 get stuck behind, just because that process

is behind from the beginning. Therefore after the last phase half of the processes are also behind

(kind of synchronized with process 0), whereas the other half is still looking quite good. We can also

see that we have a lot of idle time in the very first message sending / receiving call. This alone

confirms my previous homework sets in that sense that warm up runs are indeed necessary since the

other phases have less idle time after the sending statement and also perform the receive much

faster.

Question:

Run your program with and without MPE, timing the Allreduce() execution time. Does the inclusion

of MPE profiling reduce performance?

Answer:

Indeed it does. I ran the program with the same setup (number of processors: 16, number of

doubles: 8, number of iterations: 16) two times. The output is displayed in the next section. The total

difference for this setup was s or nearly 50% of the execution time without MPE. Overall in

the program that included MPE we can say that the MPE instructions made like 30% of the whole

program execution time. This is indeed a reduced performance, but since we can assume that the

Legend

Memory

Communication

Computation

Idle

0.00 Time in seconds 0.00023

1
5

R
an

k
o

f
p

ro
ce

ss
o

r

 0

Parameters

np = 16

nd = 8

ni = 16

i = 1st

HPSC5576 Florian Rappl HW|8

5

MPE time does not scale linearly with the program, the bigger a program is the less performance

MPE consumes in comparison to the main program.

Program output:

The final result is 960.000000

PROCESSORS: 16

VECTORLENGTH: 8

ITER 16 TIME 1.002204e-03 MPEP ON

Disabling the clock synchronization...

The final result is 960.000000

PROCESSORS: 16

VECTORLENGTH: 8

ITER 16 TIME 7.105557e-04 MPEP OFF

Disabling the clock synchronization...

The first output is with MPE active, while the second one used the “–wompe” command line

argument of the program to disable the execution of MPE profiling.

Code printout

#define ITERATIONS 16 1
#include <stdio.h> 2
#include <stdlib.h> 3
#include <string.h> 4
#include "mpi.h" 5
/* global logging event variables */ 6
int eventMem_s, eventMem_e; /* for memory */ 7
int eventComm_s, eventComm_e; /* for communication */ 8
int eventComp_s, eventComp_e; /* for computation */ 9
/* prototype of (slightly modified) my_allreduce function */ 10
void my_allreduce(double* sndvalue, double* recvalue, int count, unsigned 11
 int rank, int processors, int tag, MPI_Comm comm, int wo_mpe); 12
 13
int main(int argc, char* argv[]) { 14
 int i, j; /* loop counters */ 15
 int my_rank; /* rank of process */ 16
 int p; /* number of processes */ 17
 int tag = 0; /* tag for messages */ 18
 int count = 1; /* vector size */ 19
 double *sndvec; /* send vector */ 20
 double *recvec; /* receive vector */ 21
 double final = 0.0; /* final result */ 22
 double starttime; /* timing starttime */ 23
 double endtime; /* timing endtime */ 24
 int wo_mpe = 0; /* without mpe flag */ 25
 /* Command line args parser (shortened for -n & -wompe)*/ 26
 for(i = 1; i < argc; i++) 27
 { 28
 //[...] same as in Homework 3 – now only additional: 29
 else if(strcmp(argv[i], "-wompe") == 0) 30
 wo_mpe = 1; 31
 } 32
 /* Start up MPI */ 33
 MPI_Init(&argc, &argv); 34
 starttime = MPI_Wtime(); 35
 if(wo_mpe == 0) 36
 { 37

HPSC5576 Florian Rappl HW|8

6

 /* Start up MPE */ 38
 MPE_Start_log(); 39
 /* Getting and setting some MPE_Log numbers */ 40
 eventMem_s = MPE_Log_get_event_number(); 41
 eventMem_e = MPE_Log_get_event_number(); 42
 eventComm_s = MPE_Log_get_event_number(); 43
 eventComm_e = MPE_Log_get_event_number(); 44
 eventComp_s = MPE_Log_get_event_number(); 45
 eventComp_e = MPE_Log_get_event_number(); 46
 } 47
 48
 /* Find out process rank */ 49
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 50
 /* Find out number of processes */ 51
 MPI_Comm_size(MPI_COMM_WORLD, &p); 52
 /* Check if processor count is %2 - else finish */ 53
 if(p % 2 != 0) 54
 { 55
 if(my_rank == 0) printf("Limited to np = 2^n."); 56
 } 57
 else 58
 { 59
 /* setup the events */ 60
 if(my_rank == 0 && wo_mpe == 0) 61
 { 62
 /* define log for M (memory) */ 63
 MPE_Describe_state(eventMem_s, eventMem_e, 64
 "Memory", "red"); 65
 /* define log for C (communication) */ 66
 MPE_Describe_state(eventComm_s, eventComm_e, 67
 "Communication", "green"); 68
 /* define log for A (arithmetic) */ 69
 MPE_Describe_state(eventComp_s, eventComp_e, 70
 "Computation", "blue"); 71
 } 72
 if(wo_mpe == 0) 73
 /* S,LOG(M) */ 74
 MPE_Log_event(eventMem_s, 0, 75
 "Allocating + filling sendvector"); 76
 /* create vector for sending data */ 77
 sndvec = (double*)malloc(count * sizeof(double)); 78
 /* filling the vector with data - my_rank */ 79
 for(i = 0; i < count; i++) 80
 sndvec[i] = (double)my_rank; 81
 if(wo_mpe == 0) 82
 /* E,LOG(M) */ 83
 MPE_Log_event(eventMem_e, 0, 84
 "Sendvector allocated + filled"); 85
 /* measuring process */ 86
 for(i = 0; i < ITERATIONS; i++) 87
 { 88
 final = 0.0; 89
 if(wo_mpe == 0) 90
 /* S,LOG(M) */ 91
 MPE_Log_event(eventMem_s, 0, 92
 "Allocating + filling recvector"); 93
 /* create and set the receive vector */ 94
 recvec = (double*)malloc(count * sizeof(double)); 95
 for(j = 0; j < count; j++) 96
 recvec[j] = 0.0; 97
 if(wo_mpe == 0) 98

HPSC5576 Florian Rappl HW|8

7

 /* E,LOG(M) */ 99
 MPE_Log_event(eventMem_e, 0, 100
 "Recvector allocated + filled"); 101
 /* call the specified function */ 102
 my_allreduce(sndvec, recvec, count,(unsigned int)my_rank, 103
 p, tag, MPI_COMM_WORLD, wo_mpe); 104
 if(wo_mpe == 0) 105
 /* S,LOG(A) */ 106
 MPE_Log_event(eventComp_s, 0, 107
 "Adding everything together"); 108
 /* gather the data for the final result (chk) */ 109
 for(j = 0; j < count; j++) 110
 final += recvec[j]; 111
 if(wo_mpe == 0) 112
 /* E,LOG(A) */ 113
 MPE_Log_event(eventComp_e, 0, 114
 "Finished all additions"); 115
 /* print out final result if all iterations done */ 116
 if(my_rank == 0 && (i + 1) % ITERATIONS == 0) 117
 printf("The final result is %f\n", final); 118
 119
 if(wo_mpe == 0) 120
 /* S,LOG(M) */ 121
 MPE_Log_event(eventMem_s, 0, 122
 "Clearing recvvector"); 123
 /* clear memory */ 124
 free(recvec); 125
 if(wo_mpe == 0) 126
 /* E,LOG(M) */ 127
 MPE_Log_event(eventMem_e, 0, "Recvector cleared"); 128
 } 129
 130
 if(wo_mpe == 0) 131
 /* S,LOG(M) */ 132
 MPE_Log_event(eventMem_s, 0, "Clearing sendvector"); 133
 free(sndvec); 134
 135
 if(wo_mpe == 0) 136
 /* E,LOG(M) */ 137
 MPE_Log_event(eventMem_e, 0, "Sendvector cleared"); 138
 if(my_rank == 0) 139
 { 140
 printf("PROCESSORS:\t%d\n", p); 141
 printf("VECTORLENGTH:\t%d\n", count); 142
 } 143
 } 144
 145
 if(wo_mpe == 0) 146
 /* Shut down MPE */ 147
 MPE_Stop_log(); 148
 endtime = MPI_Wtime(); 149
 150
 if(my_rank == 0) 151
 printf("ITER %d\tTIME %e\tMPEP %s\n", ITERATIONS, 152
 endtime - starttime, wo_mpe == 0 ? "ON" : "OFF"); 153
 154
 /* Shut down MPI */ 155
 MPI_Finalize(); 156
 157
 return 0; 158
} /* main */ 159

HPSC5576 Florian Rappl HW|8

8

 160
void my_allreduce(double* sndvalue, double* recvalue, int count, unsigned 161
 int rank, int processors, int tag, MPI_Comm comm, int wo_mpe) { 162
 /* is only designed for L->H (up) in no verbose */ 163
 int i, j; /* Loop counters */ 164
 unsigned int mask = 1; /* the bit mask */ 165
 unsigned int dest = 0; /* destination */ 166
 MPI_Status status; /* status buffer */ 167
 double *tmpvalue; /* temporary vec */ 168
 if(wo_mpe == 0) 169
 /* S,LOG(M) */ 170
 MPE_Log_event(eventMem_s, 0, "Allocating and filling Tempvec"); 171
 /* allocate memory for receive vector */ 172
 tmpvalue = (double*)malloc(count * sizeof(double)); 173
 /* get the receive vector set up */ 174
 for(j = 0; j < count; j++) 175
 recvalue[j] += sndvalue[j]; 176
 if(wo_mpe == 0) 177
 /* E,LOG(M) */ 178
 MPE_Log_event(eventMem_e, 0, "Tempvec allocated and filled"); 179
 for(i = 1; i < processors; i *= 2) 180
 { 181
 if(wo_mpe == 0) 182
 /* S,LOG(A) */ 183
 MPE_Log_event(eventComp_s, 0, "Starting Bitshift"); 184
 /* bit shift to det. the partner */ 185
 dest = mask ^ rank; 186
 if(wo_mpe == 0) 187
 { 188
 /* E,LOG(A) */ 189
 MPE_Log_event(eventComp_e, 0, "Bitshift ended"); 190
 /* S,LOG(C) */ 191
 MPE_Log_event(eventComm_s, 0, "Starting send/recv"); 192
 } 193
 /* communication */ 194
 MPI_Send(recvalue, count, MPI_DOUBLE_PRECISION, dest, tag, 195
 comm); 196
 MPI_Recv(tmpvalue, count, MPI_DOUBLE_PRECISION, dest, tag, 197
 comm, &status); 198
 if(wo_mpe == 0) 199
 { 200
 /* E,LOG(C) */ 201
 MPE_Log_event(eventComm_e, 0, "Send/recv ended"); 202
 /* S,LOG(A) */ 203
 MPE_Log_event(eventComp_s, 0, 204
 "Adding values and bitshifting"); 205
 } 206
 /* do the desired operation - in this case sum up */ 207
 for(j = 0; j < count; j++) 208
 recvalue[j] += tmpvalue[j]; 209
 /* do the bit shift - for L->H (up) */ 210
 mask = mask << (unsigned int)1; 211
 if(wo_mpe == 0) 212
 /* E,LOG(A) */ 213
 MPE_Log_event(eventComp_e, 0, 214
 "Values added and bitshifted"); 215
 } 216
} /* my_allreduce */ 217

