
(HPSC 5576 ELIZABETH JESSUP)

HIGH PERFORMANCE SCIENTIFIC COMPUTING

 :: Homework / 6

 :: Student / Florian Rappl

2 problems / 15 points

HPSC5576 Florian Rappl HW|6

2

Problem 1

Task:

Programming assignment 7.12.2 from Pacheco's PPMPI textbook: Creating an intercommunicator

from intracommunicators (p. 133), 10 pts

Write a short program that splits the processes in MPI_COMM_WORLD into two communicators: the

processes with even ranks and the processes with odd ranks. (Do this using standard MPI groups and

intracommunicators.)

Then, create an intercommunicator from these two communicators. Have each process in the odd-

ranked communicator send a message to a process in the even-ranked communicator. Be sure to

handle the case where there's an odd number of processes in MPI_COMM_WORLD.

Solution:

My solution is pretty straight forward programmed. First of all I make a group that will lead as the

parent group for the intercommunication, i.e. the communication between the subgroups. Since

MPI_COMM_WORLD is the root of the communication group tree I picked this one.

Then I tell MPI to recognize a new group and after that I fill this new group with the members that

the one process that is instanced belongs to (either ODD or EVEN group). The odd group will always

have floor(p/2) members, while the even group will have between floor(p/2) and floor(p/2)+1

members. To last case I handle with an ?-operator and the modulo operation % 2.

In the next step I create the intra-communication and then the inter-communication. The group

leaders are 0 and 1 (viewed from the parent communicator). Here I abuse the % 2 operator again.

To show the success I send a message between the communicators. I sent from every odd process

(viewed from the parent communicator) to its counter-part in the other group (i.e. from process 1 in

its own group to process 1 in the other group – those would be process 2 and 3 seen from the

MPI_COMM_WORLD communicator). To do that I just use floor(my_rank / 2) as rank in the group.

The receiving part has to be implemented carefully since an odd number of processes could lead to a

receive call that has no proper send call on the other side. Since the problem arises only if is

equal to an even processor I just had to exclude that case.

Program output:

D:\Documents\Visual Studio 2005\Projects\Whatever\Debug>mpiexec -n 9 intcom

Greetings from processor 1 (0,o) to 0 (0,e)

Greetings from processor 5 (2,o) to 4 (2,e)

Greetings from processor 3 (1,o) to 2 (1,e)

Greetings from processor 7 (3,o) to 6 (3,e)

Additionally to that output I included the possibility to print an intra-communication-broadcast – just

to see if the group has been created the way it was intended. This feature is included in the *.tar.zip.

HPSC5576 Florian Rappl HW|6

3

Code printout:

#include <stdio.h> 1
#include <string.h> 2
#include "mpi.h" 3
int main(int argc, char* argv[]) 4
{ 5
 int my_rank; /* rank of process */ 6
 int p; /* number of processes */ 7
 int tag = 0; /* tag for messages */ 8
 char message[100]; /* storage for message */ 9
 int* group_members; /* local group members */ 10
 int group_size; /* local group size */ 11
 int i, j; /* loop counters */ 12
 MPI_Status status; /* return status for rec*/ 13
 MPI_Group comm_group; /* COMM_WORLD group */ 14
 MPI_Comm parent_comm; /* WORLD_COMMUNICATION */ 15
 MPI_Group intra_group; /* COMM_INTRA group */ 16
 MPI_Comm intra_comm; /* INTRA_COMMUNICATION */ 17
 MPI_Comm inter_comm; /* INTER_COMMUNICATION */ 18
 /* Start up MPI */ 19
 MPI_Init(&argc, &argv); 20
 /* Define a communicator for COMM_WORLD as parent */ 21
 parent_comm = MPI_COMM_WORLD; 22
 /* Find out process rank */ 23
 MPI_Comm_rank(parent_comm, &my_rank); 24
 /* Find out number of processes */ 25
 MPI_Comm_size(parent_comm, &p); //Cancel if p < 2 26
 /* Get the whole group of the COMM_WORLD */ 27
 MPI_Comm_group(parent_comm, &comm_group); 28
 /* Build a new group (sub-group) of COMM_WORLD */ 29
 group_size = p / 2 + (my_rank % 2 == 0 ? p % 2 : 0); 30
 group_members = (int*)malloc(sizeof(int) * group_size); 31
 j = my_rank % 2; 32
 for(i = 0; i < group_size; i++) 33
 group_members[i] = j + i * 2; 34
 /* Set the group members of this subgroup */ 35
 MPI_Group_incl(comm_group, group_size, group_members, 36
 &intra_group); 37
 /* Create the new communicator with the def. above */ 38
 MPI_Comm_create(MPI_COMM_WORLD, intra_group, &intra_comm); 39
 /* Create a proper inter-communication */ 40
 MPI_Intercomm_create(intra_comm, 0, parent_comm, 41
 (my_rank + 1) % 2, tag, &inter_comm); 42
 /* Sending a message if odd process or receiving if even */ 43
 if (my_rank % 2 == 0 && my_rank < p - 1) 44
 { /* Receiving - unless last && odd number of processes */ 45
 MPI_Recv(&message, 100, MPI_CHAR, my_rank / 2, tag, 46
 inter_comm, &status); 47
 printf("%s\n", message); 48
 } 49
 else if(my_rank % 2 == 1) 50
 { /* always sending */ 51
 sprintf(message, "Greetings from proc. %d (%d,o) to %d (%d,e)", 52
 my_rank, my_rank / 2, my_rank - 1, my_rank / 2); 53
 MPI_Send(&message, 100, MPI_CHAR, my_rank / 2, tag, 54
 inter_comm); 55
 } //Printout Broadcast message to see group structure(s) 56
 /* Shut down MPI */ 57
 MPI_Finalize(); 58
 return 0; 59

HPSC5576 Florian Rappl HW|6

4

} /* main */ 60

Problem 2

Task:

Spawning multiple programs at the same time using mpirun/mpiexec , 5 pts

With MPI-2, there are three ways to start or link multiple MPI executable into a single functional

program:

 Multiple programs can be started at the same time using mpirun/mpiexec

 A MPI program can start child parallel programs using MPI_Comm_spawn

 Separately running programs can establish communication using "ports"

The MPI installation on Blacklight supports starting multiple programs at the same time from a single

mpiexec command line. Make a PBS script with an mpirun line that runs both of the programs at the

same time.

Solution:

My program just uses the code snipped for printing the process name and the process rank as stated

in the assignment. Additionally I compiled two programs called spawnONE and spawnTWO with that

code. Then I modified the script I used for Blacklight in the single-blade mode and executed the

script. The modifications in the script lied in the mpirun command. The altered line is shown in the

output.

Question:

If you start two programs on the same mpirun command line, how are the communicators

configured? Do you get one MPI_COMM_WORLD communicator shared among both programs? Do

you get two separate MPI_COMM_WORLDs linked with an intercommunicator?

Answer:

I got one shared MPI_COMM_WORLD communicator since the number of total processes has been

 and the rank of processes in program number 2 has been , where is the rank the

process would have had normally.

Program output:

mpirun 5 ./spawnONE : 3 ./spawnTWO

Hello, I am 7 of 8 running ./spawnTWO on bl0.psc.teragrid.org

Hello, I am 0 of 8 running ./spawnONE on bl0.psc.teragrid.org

Hello, I am 2 of 8 running ./spawnONE on bl0.psc.teragrid.org

Hello, I am 1 of 8 running ./spawnONE on bl0.psc.teragrid.org

Hello, I am 3 of 8 running ./spawnONE on bl0.psc.teragrid.org

Hello, I am 4 of 8 running ./spawnONE on bl0.psc.teragrid.org

Hello, I am 6 of 8 running ./spawnTWO on bl0.psc.teragrid.org

Hello, I am 5 of 8 running ./spawnTWO on bl0.psc.teragrid.org

HPSC5576 Florian Rappl HW|6

5

Code printout:

#include <stdio.h> 1
#include <string.h> 2
#include "mpi.h" 3
 4
int main(int argc, char* argv[]) 5
{ 6
 int my_rank; /* rank of process */ 7
 int p; /* number of processes */ 8
 int source; /* rank of sender */ 9
 int dest; /* rank of receiver */ 10
 int tag = 0; /* tag for messages */ 11
 char my_name[MPI_MAX_PROCESSOR_NAME]; 12
 int my_name_len; /* length of my_name */ 13
 MPI_Status status; /* return status for rec*/ 14
 /* Start up MPI */ 15
 MPI_Init(&argc, &argv); 16
 /* Find out process rank */ 17
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 18
 /* Find out number of processes */ 19
 MPI_Comm_size(MPI_COMM_WORLD, &p); 20
 /* Modified from Pacheco -- get machine name */ 21
 MPI_Get_processor_name(my_name, &my_name_len); 22
 /* Print out info */ 23
 printf("Hello, I am %i of %i running %s on %s\n", my_rank, 24
 p, argv[0], my_name); 25
 /* Shut down MPI */ 26
 MPI_Finalize(); 27
 return 0; 28
} /* main */ 29

