
(HPSC 5576 ELIZABETH JESSUP)

HIGH PERFORMANCE SCIENTIFIC COMPUTING

 :: Homework / 4

 :: Students / C. Preis && F. Rappl

1 problem / 25 points

HPSC5576 C. Preis and F. Rappl HW|4

2

Problem 1

Task:

Programming assignment 11.11.01 from Pacheco's PPMPI textbook: , measurement (p. 258).

Write a short program that measures and -- the latency and (inverse) throughput -- of a MPI

interconnect.

Solution:

The program itself was pretty straightforward and does not require much description. First of all we

print out the processor name (which can help us a lot as Trestles and Frost) and then determine on

which process we currently are. One of the processes (in this case we use 0) is the master process,

the other one is the slave process (in our case 1).

Since we are timing the round-trip time (RTT) we have to be careful in our calculations later on. We

thought that (since our experience shows that this is never wrong) a warm-up-run would be nice as

well as a large amount of iterations (we took) since the measured time for 1 iteration will be

very short. In the end we will just divide the total time by (factor due to RTT) and obtain

results for the different tasks.

a. Large message latency and bandwidth

Task:

Run the program to examine messages between 1 byte and 1 MB in size, increasing the message size

by powers of two, for the following five configurations (we did actually all 7, i.e. included Blacklight).

Solution:

i. NCAR Frost | within a node

ii. NCAR Frost | within a partition

iii. NCAR Frost | across partitions

To determine it was assumed that for very small messages the message round trip time is

dominated by the latency, since . So was calculated dividing the time of round trips

for a very small message (8 byte) divided by ().

Similarly to determine TC it was assumed that for very big messages the message round trip time is

dominated by the throughput. So TC was calculated dividing the time of round trips for a very

big message (1 MiB) divided by ().

We were able to see that the virtual node mode (VNM) of Frost has the best speed (lowest latency,

best bandwidth) overall. For a certain region (above 128 bytes and below 512 bytes) we see that the

partition and node (which are pretty equal in the long run, but the node has a better latency) are

even better than the VNM.

HPSC5576 C. Preis and F. Rappl HW|4

3

Summary within a node within a partition across partitions

Latency (µs) 2,393310547 2,605712891 3,486694336

 (cycles) 1675,317383 1823,999023 2440,686035

Throughput (MiB/s) 365,935971 144,9020703 149,2079357

 (µs/byte) 0,002606123 0,006581509 0,006391579

 (cycles/byte) 1,824286417 4,607056477 4,474105337

iv. SDSC Trestles | within a node

v. SDSC Trestles | between two different nodes

The connection to Trestles was no problem since it was as easy to access as Frost over the TeraGrid

portal. What makes Trestles a little bit harder to use is the required batch file or command line

parser script language. Since the SDSC has a lot of documentations online for Trestles it was possible

to create a batch script to be used for this purpose. For the measurements within a node we used

#!/bin/bash

#PBS -q normal

#PBS -A TG-SEE110002

#PBS -l nodes=1:ppn=2

#PBS -l walltime=00:10:00

#PBS -o single_node_job.output

#PBS -N PINGPONG_MPI

#PBS -V

cat $PBS_NODEFILE

cd $PBS_O_WORKDIR #change to the working directory

mpirun_rsh -np 2 -hostfile $PBS_NODEFILE ./pingpong

which did run well from the first time we used it.

1

10

100

1000

10000

si
n

gl
e

 m
e

ss
ag

e
 t

im
e

 (
µ

s)

message size (KiB)

FROST timing (4096 iterations)

VNM

Node

Partition

HPSC5576 C. Preis and F. Rappl HW|4

4

The other one is nearly the same except another node distribution (no 2 processors on one node but

2 nodes with 1 processor each):

#PBS -l nodes=2:ppn=1

#PBS -o inter_node_job.output

The timing results were quite remarkable. We were able to see that the InfiniBand network that the

SDSC Trestles uses is in fact a lot faster than the one Frost uses. Furthermore we could see that the

connection between two nodes is faster than the connection of the processors in a node.

Summary within a node different nodes

Latency (µs) 1,177612305 1,80480957

 (cycles) 2826,269531 4331,542969

Throughput (MiB/s) 969,3681097 2642,596842

 (µs/byte) 0,00098381 0,000360885

 (cycles/byte) 2,361144684 0,866124686

For small messages however (really small ones) the connection between two processors at the same

node wins due to a much shorter connection. The bandwidth of the Trestles system is approx. 9

times faster than the bandwidth of the VNM of the Frost system.

vi. PSC SGI Blacklight | within a blade

vii. PSC SGI Blacklight | between two different blades

Connecting to the SGI Blacklight system at Pittsburgh was also more than easy. The Java module

allows us to connect to other systems even though they are not on the login page. By just entering

1

10

100

1000

10000

si
n

gl
e

 m
e

ss
ag

e
 t

im
e

 (
µ

s)

message size (KiB)

SDSC Trestles timing (4096 iterations)

SingleNode

InterNode

HPSC5576 C. Preis and F. Rappl HW|4

5

the right address of the computer (blacklight.psc.teragrid.org) we were able to connect over the

TeraGrid portal. Blacklight uses a script language that is pretty similar to Trestles. Our batch file was:

#!/bin/csh

#PBS -l ncpus=16

#PBS -l walltime=10:00

#PBS -j oe

cd $HOME/hpsc/pingpong/

setenv MPI_DSM_CPULIST 1,2 #allocates the specified CPUs

setenv MPI_DSM_VERBOSE 1 #activates verbose mode

mpirun -np 2 ./pingpong

For Blacklight we have to be very cautious with our CPU allocation. We can only use a multiple of 16

(which is the amount of CPUs in a blade). Over the environment variable we can determine which of

the 16 we allocate with our 2 MPI processes. This line was more interesting in the next one (for inter-

blade connection), where we had to allocate 32 CPUs (to get 2 blades). We wrote there

setenv MPI_DSM_CPULIST 1,17 #allocates the specified CPUs

to get the first processor on the first blade and the second processor on the second blade.

Summary within a blade different blades

Latency (µs) 0,345825195 1,530029297

 (cycles) 785,0231934 3473,166504

Throughput (MiB/s) 5826,109962 1087,889724

 (µs/byte) 0,00016369 0,000876628

 (cycles/byte) 0,371575668 1,989944984

This is actually the fastest of all networks with a bandwidth that is reaching 6 GiB/s.

0,1

1

10

100

1000

si
n

gl
e

 m
e

ss
ag

e
 t

im
e

 (
µ

s)

message size (KiB)

PSC SGI Blacklight timing (4096 iterations)

SingleBlade

InterBlade

HPSC5576 C. Preis and F. Rappl HW|4

6

b. Small message latency and bandwidth

Task:

Using Frost, run the program between two nodes for messages between 1 byte and 4 KiB in size,

increasing the message size linearly. Plot this data and determine if (and if so, at what data size) the

MPI implementation switches delivery protocols.

Solution:

Obviously MPI switches the delivery protocol at 1000 bytes (1 KB or 1 KiB - 24 bytes). Besides that we

see kind of steps in the plot which is an indicator that MPI delivers not an arbitrary number of bytes

but a fixed amount of bytes, i.e. for a message bigger than 1000 bytes and smaller than 1456 bytes

the amount of time is nearly the same. It then seems that the higher size is selected for about 480

bytes more, i.e. the next step goes till 1936, and then we have 2416, 2896 etc.

Summary:

Frost

1 Node
1

Partition
2

Partitions
Trestles

1 Node
2

Nodes
Blacklight

1 Blade
2

Blades

 (cycles) 1675 1823 2440 2826 4331 785 3473

 (cycles/byte) 1,8 4,6 4,5 2,4 0,9 0,4 2,0

Output printout:

This section displays some output printouts of these three systems. A more detailed output can be

viewed in the *.tar.zip file which is uploaded in the Moodle.

0

20

40

60

80

100

120

140

0 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096

N
o

d
e

 S
in

gl
e

 m
e

ss
ag

e
 t

im
e

 (
µ

s)

Message size (bytes)

FROST linear timing (4096 iterations)

HPSC5576 C. Preis and F. Rappl HW|4

7

a. Frost

The following shows a sample output for an inner node Ping-Pong:

Process 1 is running on Processor <0,0,1,0> in a <4, 4, 2, 1> mesh

Process 0 is running on Processor <0,0,0,0> in a <4, 4, 2, 1> mesh

Iterations: 4096, Size: 1, Time: 0.021346

Iterations: 4096, Size: 2, Time: 0.021475

Iterations: 4096, Size: 4, Time: 0.023161

Iterations: 4096, Size: 8, Time: 0.025204

Iterations: 4096, Size: 16, Time: 0.029795

Iterations: 4096, Size: 32, Time: 0.047949

Iterations: 4096, Size: 64, Time: 0.060829

Iterations: 4096, Size: 128, Time: 0.917428

Iterations: 4096, Size: 256, Time: 0.969544

Iterations: 4096, Size: 512, Time: 1.074398

Iterations: 4096, Size: 1024, Time: 1.302112

Iterations: 4096, Size: 2048, Time: 1.739202

Iterations: 4096, Size: 4096, Time: 2.634494

Iterations: 4096, Size: 8192, Time: 4.359450

Iterations: 4096, Size: 16384, Time: 7.848610

Iterations: 4096, Size: 32768, Time: 14.805037

Iterations: 4096, Size: 65536, Time: 28.722646

Iterations: 4096, Size: 131072, Time: 56.534734

...

In order to shorten the output the final vector (to have an easy possibility for copying the data to

Excel / QtiPlot / MatLab etc.) has been replaced by “…”.

For a VNM we have a little change in the beginning of the output:

Process 1 is running on Processor <0,0,0,1> in a <4, 4, 2, 2> mesh

Process 0 is running on Processor <0,0,0,0> in a <4, 4, 2, 2> mesh

The beginning of the output for the across partitions task looked like this:

Process 1 is running on Processor <7,3,1,0> in a <8, 4, 2, 1> mesh

Process 0 is running on Processor <0,0,0,0> in a <8, 4, 2, 1> mesh

b. Trestles

Trestles looked pretty much the same except the first lines:

trestles-1-28

trestles-1-28

Process 0 is running on trestles-1-28.local

Process 1 is running on trestles-1-28.local

This shows a connection within a node. The first two lines come from the batch script, where we

print out the $PBS_NODEFILE variable, which shows us what nodes we got allocated. The output

between two nodes looked like this:

trestles-1-31

trestles-1-32

Process 1 is running on trestles-1-32.sdsc.edu

Process 0 is running on trestles-1-31.local

HPSC5576 C. Preis and F. Rappl HW|4

8

c. Blacklight

To get a good output at Blacklight we had to use the verbose environment variable as we already did

in the batch script shown in the evaluation of the Blacklight data. The only lines that changed in the

output were the lines after the mpirun command. Those lines print out the processor names on

which our MPI program is actually running. For the single blade connection we received the following

data from the machine:

MPI: DSM information

grank lrank pinning node name cpuid

 0 0 yes r005i23b03#38_01-1218 305

 1 1 yes r005i23b03#38_02-1220 306

Process 0 is running on bl1.psc.teragrid.org

Process 1 is running on bl1.psc.teragrid.org

We can actually see that the output from our program (C file) is not helpful at all, since it only prints

out on which upper network (bl1) we currently are. We do not get any information about the blade

used. This will be more obvious in a connection between two blades:

MPI: DSM information

grank lrank pinning node name cpuid

 0 0 yes r007i23b11#182_01-5826 1457

 1 1 yes r007i23b12#184_01-5890 1473

Process 0 is running on bl1.psc.teragrid.org

Process 1 is running on bl1.psc.teragrid.org

Here we see that the big difference is in the node name (b11, b12), where we had before (b03,b03).

This way gives us the CPU-ID as well!

Code printout:

#define SIZE_ITERATIONS 18 /* 2^20 = 8 MB for doubles */ 1
#define COMM_ITERATIONS 4096 2
#include <stdio.h> 3
#include <string.h> 4
#include "mpi.h" 5
 6
void Plot_Vec(int, int*, double*, int*); 7
 8
void main(int argc, char* argv[]) 9
{ 10
 int my_rank; /* rank of process */ 11
 int p; /* number of processes */ 12
 int source; /* rank of sender */ 13
 int dest; /* rank of receiver */ 14
 int tag = 0; /* tag for messages */ 15
 char my_name[64]; /* name of machine */ 16
 int my_name_len; /* length of my_name */ 17
 MPI_Status status; /* return status 4 recv */ 18
 int n = 1; /* message size */ 19
 double start, end; /* time measurements */ 20
 double my_time; /* full time temporary */ 21
 double times[24]; /* time statistic vec */ 22
 int iterations[24];/* number of iterations */ 23
 int mess_size[24]; /* message sizes (mb...)*/ 24
 int i , j; /* other loop counters */ 25

HPSC5576 C. Preis and F. Rappl HW|4

9

 /* Setup (empty) arrays */ 26
 for (i = 0; i < 24; i++) 27
 { 28
 times[i] = 0.0; 29
 niterations[i] = 0; 30
 mess_size[i] = 0; 31
 } 32
 33
 /* Start up MPI */ 34
 MPI_Init(&argc, &argv); 35
 36
 /* Find out process rank */ 37
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 38
 39
 /* Find out number of processes */ 40
 MPI_Comm_size(MPI_COMM_WORLD, &p); 41
 42
 /* print processor name for processes */ 43
 if (my_rank < 2) 44
 { 45
 MPI_Get_processor_name(my_name, &my_name_len); 46
 printf("Process %i is running on %s\n", my_rank, my_name); 47
 } 48
 49
 for (j = 0; j < SIZE_ITERATIONS; j++) 50
 { 51
 /* define and fill message */ 52
 double message[n]; 53
 for (i = 0; i < n; i++) 54
 message[i] = i * my_rank + 1.0; 55
 56
 /* wait for all processors */ 57
 MPI_Barrier(MPI_COMM_WORLD); 58
 59
 /* determine if master or slave process */ 60
 if (my_rank == 0) 61
 { 62
 /* send to slave process */ 63
 dest = 1; 64
 source = 1; 65
 66
 /* warm up iteration */ 67
 MPI_Send(message, n, MPI_DOUBLE, dest, tag, 68
 MPI_COMM_WORLD); 69
 MPI_Recv(message, n, MPI_DOUBLE, source, tag, 70
 MPI_COMM_WORLD, &status); 71
 72
 /* Take starttime */ 73
 start = MPI_Wtime(); 74
 /* Timed iterations */ 75
 for (i = 0; i < COMM_ITERATIONS; i++) 76
 { 77
 MPI_Send(message, n, MPI_DOUBLE, dest, tag, 78

 MPI_COMM_WORLD); 79
 MPI_Recv(message, n, MPI_DOUBLE, source, tag, 80
 MPI_COMM_WORLD, &status); 81
 } 82
 /* Take endtime */ 83
 end = MPI_Wtime(); 84
 /* delta time = endtime - starttime */ 85
 my_time = end - start; 86

HPSC5576 C. Preis and F. Rappl HW|4

10

 /* populate statistic vector */ 87
 times[j] = my_time; 88
 niterations[j] = comm_iterations; 89
 mess_size[j] = n; 90
 91
 /* Print iterations summary */ 92
 printf("Iterations:\t%d\tSize:\t%d\tTime:\t%f\n", 93
 comm_iterations, n, my_time); 94
 } 95
 else if (my_rank == 1) 96
 { 97
 /* send to master process */ 98
 dest = 0; 99
 source = 0; 100
 101
 /* warm up iteration */ 102
 MPI_Recv(message, n, MPI_DOUBLE, source, tag, 103
 MPI_COMM_WORLD, &status); 104
 MPI_Send(message, n, MPI_DOUBLE, dest, tag, 105
 MPI_COMM_WORLD); 106
 107
 /* Real iterations */ 108
 for (i = 0; i < COMM_ITERATIONS; i++) 109
 { 110
 MPI_Recv(message, n, MPI_DOUBLE, source, tag, 111
 MPI_COMM_WORLD, &status); 112
 MPI_Send(message, n, MPI_DOUBLE, dest, tag, 113
 MPI_COMM_WORLD); 114
 } 115
 } 116
 117
 n *= 2; 118
 } 119
 120
 /* Print Summary */ 121
 if (my_rank == 0) 122
 { 123
 printf("\nNumber of Processes:\t%d\n", p); 124
 printf("Sizes\t\tTimes\tIterations:n"); 125
 126
 /* Plot the values in a good form */ 127
 Plot_Vec(24, mess_size, times, niterations); 128
 } 129
 130
 /* Shut down MPI */ 131
 MPI_Finalize(); 132
} /* main */ 133
 134
void Plot_Vec(int veclen, int* mess_size, double *A, int* B) 135
{ 136
 int k; 137
 for (k = 0; k < veclen; k++) 138
 printf ("%d\t\t%f\t%d\n", mess_size[k], A[k], B[k]); 139
} /* Plot_Vec */ 140

