
(HPSC 5576 ELIZABETH JESSUP)

HIGH PERFORMANCE SCIENTIFIC COMPUTING

 :: Homework / 3

 :: Student / Florian Rappl

1 problem / 30 points

HPSC5576 Florian Rappl HW|3

2

Problem 1

Task:

 Write your own implementation of MPI_Allreduce using the log P butterfly allreduce algorithm.

 Compare the performance of your implementation with the built-in MPI_Allreduce function.

Solution:

My implementation of the MPI_Allreduce function is a function that is prototyped the following way:

void my_allreduce(double* sndvalue, double* recvalue, int count, unsigned

int rank, int processors, int tag, MPI_Comm comm, int type, char verbose);

As the original MPI function I have a parameter for the send vector which won’t be changed and a

parameter to the receive vector. The count specifies the length of the data vector. A difference is

that I give my function the current rank and the processor-count – whereas the MPI function does

that probably under the hood (I guess those two values are stored in the running MPI instance and

do not have to be re-calculated again – therefore this won’t change any time measurements). While

the tag and the MPI_Comm Object are two variables one also has to pass to MPI_Allreduce , the

my_allreduce has a type and a verbose argument for Low to High (1) or High to Low (-1) bit traversal

and showing the communication output. The details of the implementation are described in the code

and later on.

Communication Diagrams:

[LH] This output shows the communication for low to high given by the program with the verbose

option set to true. I set the processor count to 8. To produce this output I used the –u option (def.).

Communication from 0 to 1

Communication from 1 to 0

Communication from 2 to 3

Communication from 3 to 2

Communication from 4 to 5

Communication from 5 to 4

Communication from 6 to 7

Communication from 7 to 6

Communication from 0 to 2

Communication from 1 to 3

Communication from 2 to 0

Communication from 3 to 1

Communication from 4 to 6

Communication from 5 to 7

Communication from 6 to 4

Communication from 7 to 5

Communication from 0 to 4

Communication from 1 to 5

Communication from 2 to 6

Communication from 3 to 7

Communication from 4 to 0

Communication from 5 to 1

Communication from 6 to 2

Communication from 7 to 3

HPSC5576 Florian Rappl HW|3

3

This can be drawn as the following for initial state (top) to final state (bottom).

[HL] This output shows the communication for high to low given by the program with the verbose

option set to true. Again with processor count set to 8. To produce this output I used the –d option.

Communication from 0 to 4

Communication from 1 to 5

Communication from 2 to 6

Communication from 3 to 7

Communication from 4 to 0

Communication from 5 to 1

Communication from 6 to 2

Communication from 7 to 3

Communication from 0 to 2

Communication from 1 to 3

Communication from 2 to 0

Communication from 3 to 1

Communication from 4 to 6

Communication from 5 to 7

Communication from 6 to 4

Communication from 7 to 5

Communication from 0 to 1

Communication from 1 to 0

Communication from 2 to 3

Communication from 3 to 2

Communication from 4 to 5

Communication from 5 to 4

Communication from 6 to 7

Communication from 7 to 6

This can be drawn as the following for initial state (top) to final state (bottom).

1 2 3 4 5 6 7 0

1 2 3 4 5 6 7 0

1 2 3 4 5 6 7 0

1 2 3 4 5 6 7 0

HPSC5576 Florian Rappl HW|3

4

Correctness of my implementation:

The output for the communication diagrams already proofs that the communication between the

processes is happening in the desired order.

Since my program has the processors ID in every element of its initial sending vector, we can use the

small Gauss for calculating the sum in the outcome (for every possible processor count). We have

 ()

This means for a vector with elements and a processor count with we obtain .

The final result is 30.000000

The time for my_allreduce in 15 Iterations was 0.000718

The final result is 30.000000

The time for mpi_allreduce in 15 Iterations was 0.003542

Therefore everything is working as intended. Let’s note that on my machine my function is faster.

Performing the tests to evaluate the speed:

a.) network throughput analysis

Since this test was supposed to be in a range from 1 double (8 bytes) to 1 MB (131072 doubles) I

figured out that the most efficient (meaning getting the most information out with the least amount

of trials) would be to test it with a facultative but falling, i.e. somehow log related way of distributing

the measurement values for the array size with a factor of 8 then 4 and then finally 2 for the

1 2 3 4 5 6 7 0

1 2 3 4 5 6 7 0

1 2 3 4 5 6 7 0

1 2 3 4 5 6 7 0

HPSC5576 Florian Rappl HW|3

5

ascending values. In the end I got the following distribution for the number of doubles: 1, 8, 64, 256,

1024, 4096, 16384, 65536, and 131072. That means I have to measure nine times with a processor

count of 128.

I made 16 iterations for both algorithms, always dropping out the first iteration – the remaining 15

have been stopped using MPI_Wtime.

Fig. 1 Comparison of both algorithms in terms of network throughput (both had 15 iterations)

The plot is quite easy to interpret. The MPI function beats my algorithm by an approx. factor of 10.

Remarkable is that also the offset is smaller, i.e. the MPI function is also faster to start up.

It is hard to beat the MPI_Allreduce since the implementation seems much optimized and it seems to

use a more optimized topology for Frost than the Butterfly. Since my_allreduce beats the

MPI_Allreduce on my machine constantly I guess that the topology of my machine differs from the

topology of Frost, i.e. I do not have a Torus but probably a star, ring or even a mesh.

Therefore I conclude that the MPI routine is very hard if not impossible to beat by using a specific

non-Torus topology, in this case the Butterfly.

b.) network latency analysis

Here our data set was predefined, i.e. we set our array to 1 (double) and increase the processor

count in factors of 2. Therefore we measure np= 2, 4, 8, 16, 32, 64, 128, which gives us 6

measurements to do, since the 7th value was already measured in the evaluation before.

I made again 16 iterations for both algorithms and dropped the first one. The remaining 15 have

been stopped using MPI_Wtime.

HPSC5576 Florian Rappl HW|3

6

Fig. 2 Comparison of both algorithms in terms of network latency analysis (both had 15 iterations)

While my function shows a clear behavior, the MPI function shows some weird outcome.

Between the first and second measurement you can find a slope – whereas between the 2nd and the

3rd one is just finding a straight line without any slope – constant behavior. The 3rd and 4th are then

again connected with a line that has a small slope, while the 4th and 5th have a slope of approx.

 . Therefore the implementation of the MPI_Allreduce must explicitly use the Torus or some

topology that can be easily embedded in the Torus topology.

Question (1):

How does the performance of your implementations compare with MPI_Allreduce?

Answer (1):

The MPI_Allreduce is a lot faster (roughly about times). The gap could be closed using some

techniques but in my opinion it is hard to get closer and since it is a topological thing (look at the

 () plot) it would not help – scalability is not given at all.

Question (2):

Does the bit traversal order matter for your tests?

Answer (2):

My first (and naïve clue) would have been that it does not matter. To be sure that my interpretation

is correct I just ran a few (5) other tests on NCAR / Frost. I created another plot using QtiPlot. I took

the following values (number of doubles, processor count): (1,2)1, (1,64)2, (1,128)3, (4096, 128)4, and

(131072, 128)5.

HPSC5576 Florian Rappl HW|3

7

Fig. 3 A simple test to confirm that the bit traversal does not matter

The differences between the values are that small (way below 1%) that all differences can be

projected to “tolerance issues”. On a normal machine I would just argue that the operating system

has given some other task more computation time or something like that. On the Blue Gene machine

something like this is not so probable I suppose therefore I can move those differences to “other

node with different processor who had probably a different temperature (semiconductor not

working at peak point) / network (wire) issues” etc.

So my naïve clue has been confirmed and it does not make a difference at all.

Question (3):

How do the vector size and number of processes influence allreduce performance?

Answer (3):

The MPI_Allreduce seems to be in a pretty good shape. They used the Torus to the maximum which

can be seen in those steps the plot takes. You can always connect 2 data points together with a

straight line (plateau), and then the next two in an ascending line with a small slope. Since

computation is much faster than network transfer one is actually able to read out the latency and

network transfer rate in s/byte.

However the my_allreduce follows the rules of the binary tree and just gets a behavior. The

factor before the is also nearly as big as the offset of the MPI_Allreduce function, which is not

a good sign since the average slope of the MPI inbuilt function is about 440 times smaller than the

offset. Therefore the bigger the processor count and the more data that is transferred, the better is

the MPI inbuilt function for the allreduce operation.

HPSC5576 Florian Rappl HW|3

8

Code printout:

#define ITERATIONS 32 1
 2
#include <stdio.h> 3
#include <stdlib.h> 4
#include <string.h> 5
#include "mpi.h" 6
 7
/* prototype of my_allreduce function */ 8
void my_allreduce(double* sndvalue, double* recvalue, int count, 9
 unsigned int rank, int processors, int tag, 10
 MPI_Comm comm, int type, char verbose); 11
 12
int main(int argc, char* argv[]) 13
{ 14
 int i,j; 15

int my_rank; /* rank of process */ 16
 int p; /* number of processes */ 17
 int tag = 0; /* tag for messages */ 18
 int count = 1; /* vector size */ 19
 int type = 1; /* up or down arg 1|-1 */ 20
 double* sndvec; /* send vector */ 21
 double* recvec; /* receive vector */ 22
 double final = 0.0; /* final result */ 23
 char verbose = 0; /* verbose option 0|1 */ 24
 double starttime = 0.0;/* measurement start */ 25
 double endtime = 0.0; /* measurement end */ 26
 double deltatime = 0.0;/* the final run-time */ 27
 28
 /* Command line args parser */ 29
 for(i = 1; i < argc; i++) 30
 { 31
 /* if we have the -n */ 32
 if(strcmp(argv[i],"-n") == 0) 33
 { 34
 /* but nothing else specified */ 35
 if(i == argc - 1) 36
 { 37
 printf("A veclen must be specified using -n.\n"); 38
 break; 39
 } 40
 /* or we probably have a number */ 41
 count = atoi(argv[++i]); 42
 if(count < 1) 43
 { 44
 /* but that is not a valid number */ 45
 printf("Wrong input for n. Must be > than 0.\n"); 46
 count = 10000; 47
 } 48
 } 49
 /* if we have the verbose statement */ 50
 else if(strcmp(argv[i],"-v") == 0) 51
 verbose = 1; 52
 /* if we have the explicit up state */ 53
 else if(strcmp(argv[i],"-u") == 0) 54
 type = 1; 55
 /* if we have the down state option */ 56
 else if(strcmp(argv[i],"-d") == 0) 57
 type = -1; 58
 /* if we have some help statement */ 59

HPSC5576 Florian Rappl HW|3

9

 else if(strcmp(argv[i],"-?") == 0) 60
 { 61
 printf("Command line arguments\n"); 62
 printf("======================\n"); 63
 printf("-n X\t sets the length of the vector to X\n"); 64
 printf("-v\t verbose mode\n"); 65
 printf("-d\t switches to down mode\n"); 66
 printf("-u\t switches to up mode\n"); 67
 printf("-?\t displays this help\n"); 68
 printf("======================"); 69
 return 0; 70
 } 71
 } 72
 73
 /* Start up MPI */ 74
 MPI_Init(&argc, &argv); 75
 76
 /* Find out process rank */ 77
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 78
 79
 /* Find out number of processes */ 80
 MPI_Comm_size(MPI_COMM_WORLD, &p); 81
 82
 /* Check if processor count is %2 - else finish */ 83
 if(p % 2 != 0) 84
 { 85
 if(my_rank == 0) 86
 printf("The execution is limited to 2^n processors."); 87
 } 88
 else 89
 { 90
 /* create vector for sending data */ 91
 sndvec = (double*)malloc(count * sizeof(double)); 92
 93
 /* filling the vector with data - my_rank */ 94
 for(i = 0; i < count; i++) 95
 sndvec[i] = (double)my_rank; 96
 /* measuring process */ 97
 for(i = 0; i < ITERATIONS; i++) 98
 { 99
 final = 0.0; 100
 /* create and set the receive vector */ 101
 recvec = (double*)malloc(count * sizeof(double)); 102
 for(j = 0; j < count; j++) 103
 recvec[j] = 0.0; 104
 /* start measuring process */ 105
 starttime = MPI_Wtime(); 106
 /* call the specified function */ 107
 if(i < ITERATIONS/2) 108
 my_allreduce(sndvec, recvec, count, 109
 (unsigned int)my_rank, p, tag, 110
 MPI_COMM_WORLD, type, verbose); 111
 else 112
 MPI_Allreduce(sndvec, recvec, count, 113
 MPI_DOUBLE_PRECISION, MPI_SUM, 114
 MPI_COMM_WORLD); 115
 /* end measuring process */ 116
 endtime = MPI_Wtime(); 117
 /* add the time to the counter or throw away */ 118
 if(i == 0 || i % (ITERATIONS / 2) == 0) 119
 deltatime = 0.0; 120

HPSC5576 Florian Rappl HW|3

10

 else 121
 deltatime += endtime-starttime; 122
 /* gather the data for the final result (chk) */ 123
 for(j = 0; j < count; j++) 124
 final += recvec[j]; 125
 /* print out final result if all iterations done */ 126
 if(my_rank == 0 && (i+1)%(ITERATIONS/2) == 0) 127
 { 128
 /* this depends on if we run 1st half or 2nd */ 129
 printf("The final result is %f\n", final); 130
 printf("The t for\t%s\tin\t%d\tIter was\t%f\n", 131
 i < ITERATIONS/2 ? "my" : "mpi", 132
 ITERATIONS/2-1, deltatime); 133
 } 134
 /* clear memory */ 135
 free(recvec); 136
 } 137
 free(sndvec); 138
 if(my_rank == 0) 139
 { 140
 printf("PROCESSORS:\t%d\n", p); 141
 printf("VECTORLENGTH:\t%d\n", count); 142
 } 143
 } 144
 /* Shut down MPI */ 145
 MPI_Finalize(); 146
 return 0; 147
} /* main */ 148
 149
void my_allreduce(double* sndvalue, double* recvalue, int count, 150
 unsigned int rank, int processors, int tag, 151
 MPI_Comm comm, int type, char verbose) 152
{ 153
 int i,j; /* Loop counters */ 154
 unsigned int mask = 1; /* the bit mask */ 155
 unsigned int dest = 0; /* destination */ 156
 MPI_Status status; /* status buffer */ 157
 char message[100];/* messages buff */ 158
 double* tmpvalue = /* temporary vec */ 159
 (double*)malloc(count * sizeof(double)); 160
 /* set the starting mask properly for H->L (down) */ 161
 if(type == -1) 162
 mask = processors / 2; 163
 /* get the receive vector set up */ 164
 for(j = 0; j < count; j++) 165
 recvalue[j] += sndvalue[j]; 166
 for(i = 1; i < processors; i *= 2) 167
 { 168
 /* bit shift to det. the partner */ 169
 dest = mask ^ rank; 170
 /* communication */ 171
 MPI_Send(recvalue, count, MPI_DOUBLE_PRECISION, dest, tag, 172
 comm); 173
 MPI_Recv(tmpvalue, count, MPI_DOUBLE_PRECISION, dest, tag, 174
 comm, &status); 175
 /* if verbose is on then show communication */ 176
 if(verbose == 1) 177
 { 178
 if(rank == 0) 179
 { 180
 printf("Comm. from 0 to %d\n", dest); 181

HPSC5576 Florian Rappl HW|3

11

 for(j = 1; j < processors; j++) 182
 { 183
 MPI_Recv(&message, 100, MPI_CHAR, j, 1, comm, 184
 &status); 185
 printf(message); 186
 } 187
 } 188
 else 189
 { 190
 sprintf(message, "Comm. from %d to %d\n", rank, 191
 dest); 192
 MPI_Send(&message, 100, MPI_CHAR, 0, 1, comm); 193
 } 194
 } 195
 /* do the desired operation - in this case sum up */ 196
 for(j = 0; j < count; j++) 197
 recvalue[j] += tmpvalue[j]; 198
 /* do the selected bit shift - for L->H (up) */ 199
 if(type == 1) 200
 mask = mask << (unsigned int)1; 201
 else /* or H->L (down) */ 202
 mask = mask >> (unsigned int)1; 203
 } 204
} /* my_allreduce */ 205

