
HPSC 5576 Final presentation

Florian Rappl & Christoph Preis

Contents

A. Physics

– The Ising model

– Helium mixing with Monte Carlo

B. Computation

– Splitting up the lattice & ghost-sites

– Shared memory on blades

– Reducing communication with a checkerboard

– MPI used

C. Results

PHYSICS

Part A

The Ising model1

1J. P. Sethna: Entropy, Order Parameters, and Complexity (Oxford, 2009)

• Introduced to describe ferromagnestism

• Contains only nearest neighbor interaction

• Lattice with values of ±1 on each site

• Parameter: inverse temperature 𝛽

• 2D Ising is simplest to show transition

Reminder on Monte Carlo2

• Pick site on lattice

• Choice can be random or determined

• Calculate energy 𝐻 after possible change

• Generate random number

• Accept or reject the change

2T. DeGrand : Lattice Methods for Quantum Chromodynamics (World Scientific, 2006)

0 1

He-Mixing with Monte Carlo3

• In principle the same as the Ising model

• Now values of 0,±1 for the sites

• Introduced a new parameter 𝜇

• So now 2 parameters (𝛽, 𝜇) overall

• Energy reduces to Ising model when 𝜇 = 0

3M. Blume, V. J. Emery and R. B. Griffiths: Ising model for the 𝜇 Transition and Phase Separation in He3-
He4 Mixtures, Phys. Rev. A 4(3), 1071 (1971)

What can we simulate?

Can we simulate the experimental
findings representing this helium
mixing phase diagram?

COMPUTATION

Part B

Splitting up the lattice

• We built our program with three dimensions – idea in 2D

Y

X

• The lattice should be split up equally

• We reduce dimensions starting from z, y, x

• Should make ghostsite calculation very easy

PROCESS 0

PROCESS 1

PROCESS 2

PROCESS 3

PROCESS 0 PROCESS 1
PROCESS 2
PROCESS 4
PROCESS 6
PROCESS 8

PROCESS 10
PROCESS 12
PROCESS 14

PROCESS 3
PROCESS 5
PROCESS 7
PROCESS 9

PROCESS 11
PROCESS 13
PROCESS 15

Divide 8x8 lattice into 4 (8x2) Divide 8x8 lattice into 16 (4x1)

Ghostsites from the site‘s view

• Every node prepares a vector for each side to be sent

The green processor prepares four arrays:

Top – send > orange

Bottom – send > purple

Left – no send

Right – no send

Ghostsites from the process‘s view

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

• For sending and receiving we need to make a processor grid

• In x-direction we have ±1 to the next neighbor

• We first send with even to the odd x-processes

• Then we switch and send with the odd to the even

• In y-direction we have ±𝑃𝑋 to the next neighbor

• We first send with even to the odd y-processes

• Then we switch and send with the odd to the even

Shared memory on PSC SGI Blacklight

• 1 Blade = 1 Configuration

• 𝑛 times 16 CPUs 𝑛 configurations

• Shared memory enough for huge lattice

• Fast communication in Blade

• Inter-Blade communication small

 Both benefits – large lattices and more accurate statistics

Reducing communication

• Random choice problem: communication per iteration

• Determined choice: red/black checkerboard

If we pick a specific site, e.g. for
an update process we see…

• Therefore we reduce communication with factor 𝑉/2𝑝

MPI used

a. Wrapped Send / Recv

b. Derived datatypes

c. Custom communicators

d. Broadcast & Reduce

a. Wrapped Send/Recv

int COMM_Send(void* message, int count, int dest, int tag)

{

#ifdef MPICOMM

 // execute MPI code

 return MPI_Send(message, count, MPI_DOUBLE, dest, tag,

MPI_COMM_WORLD);

#else

 //no communication needed.

 return 0;

#endif /*MPICOMM*/

}

b. Derived datatypes
struct inputData

{

 /* lattice dimensions */

 int nx, ny, nz;

...

};

struct inputData data;

void distributeInputData()

{

#ifdef MPICOMM

 // Broadcast input data. Process 0 sends, all other processes

 // receive the data.

 MPI_Bcast(&data, sizeof(struct inputData), MPI_CHAR, 0,

 MPI_COMM_WORLD);

#else

 // nothing.

#endif /*MPICOMM*/

}

c. Custom communicators

#ifdef MPICOMM

 MPI_Comm MPI_COMM_BLADE;

 MPI_Comm MPI_COMM_MASTERS;

#endif /*MPICOMM*/

// Blade communicator: All processes on one blade in a communicator

MPI_Comm_split(MPI_COMM_WORLD, latticeIndex, globalIndex,

&MPI_COMM_BLADE);

// Master communicator: All blade masters in a communicator.

MPI_Comm_split(MPI_COMM_WORLD, nodeIndex, globalIndex,

&MPI_COMM_MASTERS);

d. Broadcast & Reduce
void vectorsReduceSum(double* vec, double* sum, double* sumsq)

{

#ifdef MPICOMM

 double *out;

 /* reduce vectors from all sites */

 MPI_Reduce(vec, out, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_BLADE);

 /* sum on root node of each blade */

 if(nodeIndex == 0)

 {

 sum[0] = out[0];

 sumsq[0] = out[0] * out[0];

 }

#else

 /* execute single processor code */

 sum[0] = vec[0];

 sumsq[0] = vec[0] * vec[0];

#endif /*MPICOMM*/

}

RESULTS

Part C

Physical results

• To answer the question: YES

• We can simulate the phase diagram

• Simulation also shows predicted (critical) line

MPI speedup #1

small = 64 x 64 x 1, medium = 128 x 128 x 1, big = 256x 256 x 1, huge = 512 x 512 x 1

MPI speedup #2

small = 64 x 64 x 1, medium = 128 x 128 x 1, big = 256x 256 x 1, huge = 512 x 512 x 1

MPI speedup #3

2D huge = 512 x 512 x 1, 3D huge = 64 x 64 x 64

Thanks for your attention!

Any questions?

