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Abstract

This paper is the final report of the Independent Studies under supervision of Professor Tom DeGrand

at the University of Colorado. The topic deals with extensions in form of deflation performed on the MilcI6

code in the research field of lattice Quantum Chromodynamics. The task in this Spring Term 2011 for the

Independent Studies was to get in touch with a state of the art lattice QCD code as well as doing some

extensions and measurements with it and therefore making some conclusions about the effectiveness of

those alternations.

The extensions of the code were done in order to implement a deflation technique. In the first

step new functions are called before the conjugate gradient routine is executed, i.e. using the original

CG routine. In the next step the CG routine has been modified in order to support approximate eigenmodes.

Another technique that was being used in order to achieve this was a Schur decomposition of the

matrix which has to be inverted using the CG routine. Finally a lookup matrix that contains all the

information of a little Dirac operator had to be calculated and then inverted.
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I. INTRODUCTION

The most successful approach to the theory of Quantum Chromodynamics (QCD) is lattice QCD.

This is mainly due to the strong coupling in QCD which makes pertubation theory useless for

accurate predications by calculating a doable amount of terms. Another reason is the improvement

in computation power as well as the availibility of low priced and effective cluster systems.

A huge step for modern lattice QCD simulations was the introduction of the so called Hybrid

Monte-Carlo (HMC) algorithm, which has been published by Gottlieb et al.6 after the invention

and extensions to HMC by Scaletter et al.8 and Duane et al.7. This algorithm is a combination of

Molecular Dynamics and a normal Monte-Carlo algorithm as it is described by Thomas DeGrand1.

Even though state of the art HMC algorithms are highly specialized for their calculation purposes

a lot of routines and computations can still be improved or optimized. In the last years a lot

of effort has been powered into research for better or improved conjugate gradient routines. The

main cost of a QCD program lies often in the calculation of ψ = M−1η. Since we are not able to

calculate this exactly (or would suffer from the huge cost of this calculation) we use a conjugate

gradient (CG) routine to solve Mψ = η with a source vector η and a solution vector ψ.

In the recent research we are able to see a lot of (combined) algorithms in order to improve the

standard CG routine. We see a so called biconjugate gradient (BiCG), a stabilized bigconjugate

gradient (BiCGstab) and other popular choices in many current lattice QCD codes. Another set

of questions can be raised in form of which preconditioner to pick. One possible choice would be

the mass preconditioner introduced by Hasenbusch5 and used by Wenger4. Having the appropriate

preconditioner for a specific configuration is a topic that has already been discussed in a paper by

Schaefer13. Also other authors like Rebbi14 tried to come up with some solution to minimize the

cost of this computation part lattice QCD codes.

However one of the problems is that even though a new method might work faster (and more

stable) on a certain configuration, it might work slower on a different configuration. In this paper

we try to make improvements on the (standard) conjugate gradient routine by using a deflation

with (approximate) eigenmodes in a Schur-decomposition method. We will look at the advantages

and disadvantages and will work on the required modifications of the Milc code.
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II. DYNAMICAL CLOVER APPLICATION OF THE MILC CODE

The dynamical clover application was placed the in folder clover_dyn_test and is quite similar to

the original one that is placed in clover_dynamical. The application deals with dynamical clover

fermions and includes a general gauge action. As with the other applications we have several

build methods integrated in the makefile such as a refreshed molecular dynamics algorithm, phi

algorithm as well as hybrid Monte Carlo algorithm. We always build the later one, including LU

preconditioning. This changes the dynamical fermion matrix to be the LU preconditioned matrix,

on even sites only. It is important to know that the conjugate gradient routine for this application

is contained in the file d_congrad2_cl_field.c in the generic_clover directory.

The workflow for our extensions looks like this:

1. Write a routine to test if the existing code is working properly.

2. Make corrections to the code if necessary.

3. Start with a simple deflation just modifying the wrapper function - not the conjugate gradient

routine.

4. Run several tests and evaluate the outcome of those.

5. Generalize the deflation in order to support even not exact eigenmodes.

6. Extend the wrapper as well as the conjugate gradient routine to support approximate eigen-

modes.

7. Replace the exact eigenmode finder with an approximate but faster one.

8. Run several tests and evaluate the outcome of those.

A list of directories, header files and important macros is given in MILC documentation9. The

Schrödinger Functional (SF) (which is not used by this application, but is part of the MILC Code)

is described in more detail in Tom DeGrand’s notes10.

As a remark it is important to know that all evaluations have been performed in the single processor

mode of the clover dynamical application. Since we need more communication with deflation than

without deflation another set of evaluations concerning the MPI performance of the code with and

without deflation is required in order to make predictions about (practical) effectiveness. It is also

important to know that we did not implement optimizations in the new routines. Therefore our

evaluations of the deflation represent the lower boundary of the performance curve.
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III. THEORY OF THIS SPECIFIC DEFLATION METHOD

This topic has been brought up by Lüscher11 and has since then be discussed a lot by most lattice

QCD research groups. According to Lüscher12 we could gain a lot of speed if we implement this

kind of deflation correctly.

A. The basic deflation

We start with an equation to be solved that reads (in Dirac notation)

H|ψ〉 = |η〉, (1)

where |ψ〉 is the state that we search and H as well as |η〉 are given. In our code we have H ≡M †M .

If we find eigenmodes for this H, we get for each of those k eigenmodes

H|k〉 = λk|k〉. (2)

Those eigenmodes built a basis that we can use. Since we suppose that we did not compute all

eigenmodes, which is very expensive and obsolete since we then would not have to call the conjugate

gradient routine, we have only part of a basis. Therefore every state can be deflated in a part which

already lies in this basis and a part which is kind of a residue. For our states we write

|ψ〉 = |ψL〉+ |ψH〉 =
∑

k

ck|k〉+ |ψH〉, (3)

|η〉 = |ηL〉+ |ηH〉 =
∑

k

|k〉〈k|η〉+ |ηH〉. (4)

If we take again eq. 2 and perform it on eq. 3 instead of |k〉 we see

H|ψ〉 = H|ψH〉+
∑

k

λkck|k〉
!= |ηH〉+

∑
k

|k〉〈k|η〉, (5)

which gives us (due to orthogonality) the coefficient

ck = 1/λk〈k|η〉. (6)

This calculation already reduces eq. 1 to

H|ψH〉 = |ηH〉. (7)

Using eq. 3 the full state |ψ〉 can be restored from the original |η〉 and the k eigenmodes. We can

rewrite this basic deflation in a matrix form, where H is a diagonal matrix with submatrices A
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and X on the diagonal. Our solution can therefore be obtained by ψH

ψL

 =

 A−1 0

0 X−1

 ηH

ηL

 . (8)

The form of the submatrix A can be determined using eq. 2, eq. 7 and eq. 5 obtaining

A = H − PLHPL = PHHPH , (9)

when we define

PH ≡ (1− PL), PL ≡
∑

k

|k〉〈k|, (10)

which is true in a diagonal basis, i.e. if we assume to work with exact eigenmodes.

B. The Schur decomposition

However since we already mentioned that accurate eigenmodes are expensive to compute we will

have to deal with approximate eigenmodes. In this case our matrix H will not be diagonal but in

a more general form

H =

 PHHPH PHHPL

PLHPH PLHPL

 =

 A B

C X

 . (11)

The trick now is to see that if the number of eigenvectors is small we are actually able to invert

the submatrix X exactly and with low computation cost. This is based on the so called Schur

decomposition. We can rewrite H to be

H =

 A B

C X

 =

=

 1 BX−1

0 1

 A−BX−1C 0

0 X

 1 0

X−1C 1

 . (12)

The inverse of this rewritten H is therefore given by inverting the matrices in eq. 12,

H−1 =

 1 0

−X−1C 1

 (A−BX−1C)−1 0

0 X−1

 1 −BX−1

0 1

 . (13)

With this rewritten H we can go back to solve our basic equation by computing the right hand

side of eq. 8 directly with a non-diagonal matrix, i.e. the Schur decomposition (eq. 13),

H−1

 ηH

ηL

 =

 1 0

−X−1C 1

 (A−BX−1C)−1 0

0 X−1

 ηH −BX−1ηL

ηL

 . (14)
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We now introduce some new (intermediate) states which we define as

η+ ≡ ηH −BX−1ηL

η− ≡ ηL. (15)

Using this we perform another matrix multiplication and obtain

H−1

 ηH

ηL

 =

 1 0

X−1C 1

 (A−BX−1C)−1η+

X−1η−

 . (16)

Doing another redefinition as in eq. 15 we define the states on the right as

Φ1 ≡ (A−BX−1C)−1η+ =

= (A−BX−1C)−1(ηH −BX−1ηL)

Φ2 ≡ X−1η− = X−1ηL. (17)

Therefore through the redefinition in eq. 17 the result of our equation has become

H−1

 ηH

ηL

 =

 Φ1

Φ2 −X−1CΦ1

 (18)

If we can capture the true low eigenmodes inX the submatrix A−BX−1C will be better conditioned

and therefore work better than the original conjugate gradient call without this deflation. If this

requirement is not met, the method may not work well, which is why this deflation method has

either to be implemented as a program execution option or may only be active if a certain condition

in the program is satisfied.

IV. EXTENDING THE CODE

Before extending the code some tests had to be done in order to verify the correctness of the matrix

to be solved and deflated. The test should verify that the matrix the eigenmode solver is working

with is the same matrix that the conjugate gradient routine is applied to. The eigenmodes will be

calculated using the trick which has been introduced by Kalkreuter2.

A. Tests and corrections before the implementation

In order to perform this verification a simple piece of program code has been added in the

congrad_cl_wrapper() routine of the application, right before the conjugate gradient routine

is called.
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1 void EquivalenceTest()

2 {

3 int j ;

4 double complex lambda;

5 wilson vector ∗tmp = (wilson vector∗)malloc(sites on node ∗ sizeof(wilson vector)) ;

6 for(j = 0; j < Nvecs h0; j++)

7 {

8 Matrix Vec mult(eigVec0[j], tmp); /∗ computes M adjoint ∗ M ∗ j = tmp ∗/

9 dot product(eigVec0[j ], tmp, &lambda); /∗ computes j adjoint ∗ tmp ∗/

10 /∗ prints value of this computation and lambda j (value as it should be) ∗/

11 printf (”Eigenvalue %d is %f\t|\tTestvalue %d is %f\n”, j + 1, eigVal0[ j ], j + 1, lambda.real);

12 }

13 }

The output of this little subroutine shows us if the computed eigenvalue (using the current matrix

and multiplying it with the j-th eigenvector and its adjoint), which is named testvalue and stored

in the variable lambda is the same as the original eigenvalue, which is stored in the variable

eigVal0[j].

With this simple test we could see that there were some important function calls missing, which

resulted in a different matrix which has been used by the CG routine than the one used for

calculating the eigenmodes. The required additions were some make_clovinv(ODD) calls, which

sometimes were missing after make_clov(CKU0) was called. In this case ODD is a macro that just

assigns the value of 1 and CKU0 declared as a real number with the value

CKU0 ≡ κ · (clovc)/(u3
0).

After the missing function calls were implemented the output showed the same values at each CG

call and each trajectory calculation. Since we were now sure to work with the right matrix we

could go one step further and try to implement our deflation method.

B. The basic deflation

1. Extensions to the code

The basic deflation has been implemented directly in the congrad_cl_wrapper() rou-

tine of the program. Two new functions have been introduced, which have been called
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ProjectResidueVector() as well as RestoreFullVector(). Those functions perform

|ηH〉 = |η〉 −
∑

k

ck · |k〉, (19)

ck = 〈k|η〉,

(using eq. 4) as well as

|ψ〉 = |ψH〉+
∑

k

ck · |k〉, (20)

ck = 1/λk · 〈k|η〉, (21)

analog to eq. 3. The congrad_cl_wrapper() routine is now extended from the simple CG routine

call to a function that makes the deflation of η, then calls CG routine with the deflated vector ηH

and finally does the restoration of the full ψ. The program code therefore reads:

1 int iters ;

2 register int i ;

3 register site ∗s;

4 wilson vector ∗chi = (wilson vector∗)malloc(sites on node ∗ sizeof (wilson vector)) ;

5 build h0(1); /∗ restart eigenvectors ∗/

6 /∗ save the old chi for rest . the full psi ∗/

7 FORALLSITES(i,s)

8 copy wvec(&(s−>chi), &(chi[i]));

9 ProjectResidueVector(); /∗ Project out chi to chi r ∗/

10 /∗ Normal wrapper but now solves: M adjoint ∗ M ∗ psi r = chi r ∗/

11 iters = congrad cl(niter, rsqmin, final rsq ptr ) ;

12 FORALLSITES(i,s) /∗ Restore the original chi ∗/

13 copy wvec(&chi[i], &(s−>chi));

14 RestoreFullVector(); /∗ Bring psi r to psi ∗/

15 return( iters ) ;

Those implementations have been checked carefully and tested on some test configurations with 44

and 84 lattices.

2. Analysis of the performance after the extension

After having checked the code for problems by calling the CG routine twice and comparing output

results with the same starting configuration and input parameters for a deflated and a non-deflated

application we could do some analysis of the implemented deflation method. For all performance
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analysis runs we started with the same starting configuration and input parameters (except the

number of eigenmodes to compute - since this variation was the crucial part of the analysis) and

computed one trajectory.

For this computation a lattice was chosen which has a volume of 84 and pretty realistic (and

FIG. 1: The overall number of CG iterations required for computing one trajectory

therefore practical) parameters. The parameters are listed in detail in the appendix section. In

fig. 1 we see a confirmation of the theory. With the parameters and the lattice chosen for this

configuration we achieved a better performance for the conjugate gradient routine. This can also

be seen by viewing the residue r†r in dependence of the CG time (iteration).

The plot shown in fig. 2 is exactly what we were looking for. We see that the condition of our

matrix is better due to the removal of the low eigenmodes from the solution vector. Therefore the

state we were searching for was easier to find for the conjugate gradient routine. We also see that

finding more eigenmodes is actually helpful but not required since we do not benefit from finding

those in form of a reduced computation time.

We are able to see this problem in fig. 3. While the application with no deflation active and zero

eigenmodes to compute takes the least time but has the most conjugate gradient steps, the time

won by the deflated applications due to less CG steps is more than just eaten up by the computation

of the low frequency eigenmodes. Therefore we need to work with approximate eigenmodes and

we do need to make some decomposition to our matrix H ≡M †M .
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FIG. 2: The residue of the CG routine in dependence of the iterations for the first CG call

FIG. 3: The time needed for the whole application to compute the first trajectory
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C. The Schur decomposition

1. Generalizing the algorithm

From eq. 18, the equation of the Schur decomposition theory, and the redefinitions we are able

to determine an algorithm for the modifications required in the program. We have to change the

routine for the conjugate gradient - especially those parts where the matrix is used on the state.

We have to write three new subroutines, which perform the following tasks:

• Project a mode |m〉 (given in form of a parameter) with PL, i.e.
∑

k |k〉〈k|m〉 and return the

projected mode.

• A routine to calculate and invert 〈k|H|k′〉. The resulting N × N matrix, where N is the

number of (approximate) eigenmodes, will be saved for further usage.

• Project a mode |m〉 (again given as a parameter) with the calculated matrix values from the

routine above, i.e.
∑

k,k′(〈k|H|k′〉)−1|k〉〈k′|m〉, and return the projected mode.

Additionally we outsource the calculation of H|m〉 that is performed on several parts in the func-

tion. Therefore we just have to use the new (outsourced) routine with the proper parameters instead

of a copy of the same routine with different variables over and over. All these new subroutines are

motivated by the following calculation. We start from(
A−BX−1C

)
|ψH〉 = |ηH〉 −BX−1|ηL〉, (22)

⇒ H̃ψH = η̃, (23)

and insert the definitions of A,B,C,X. Using identities like PLPL = PL and 1|m〉 = |m〉 we are

able to rewrite eq. 22 with a special bracket notation to

[|ψH〉 − {|ψH〉}] ≡ |ψ1〉, (24)

ψ1 − [(|ψ1〉)] ≡ |ψ2〉, (25)

[(|ηL〉)] ≡ |η1〉, (26)

⇒ ψ2 − {|ψ2〉}
!= |ηH〉 − η1 + {|η1〉} , (27)

where we set the special notation to be:

• [· · · ] donates the use of H (existing, outsourced routine) on the state,

• {· · · } donates the use of PL (new routine) on the state and
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• (· · · ) donates the use of (PLHPL)−1 (new routine) (i.e. including (〈k|H|k′〉)−1) on the state.

The algorithm is now performed like this:

1. We split |η〉 = |ηH〉+ |ηL〉 as before.

2. We use the conjugate gradient routine to solve a subsystem in the form of eq. 22 as outlined

with eq. 27 using the two new subroutines.

3. We take the solution |ψH〉 and get |ψL〉 using (this is no bracket notation!)

|ψL〉 =
∑
k,k′

|k〉 1
〈k|H|k′〉

(
〈k′|ηL〉 − 〈k′|H

[
|ψH〉 −

∑
k′′

|k′′〉〈k′′|ψH〉

])
. (28)

4. Now the full solution can be obtained using the already known

|ψ〉 = |ψH〉+ |ψL〉. (29)

For a first precision and algorithm test we excluded the calculation of 〈k|H|k′〉 and its inverse and

used δk,k′/λk instead. After the code was sure to be working correctly we implemented another set

of functions. Those functions performed the following tasks:

• Calculating the matrix elements of 〈k|H|k′〉, which is an N × N matrix, where N is the

number of (approximate) eigenvectors.

• Inverting this matrix and therefore getting (〈k|H|k′〉)−1.

We stored these computed values in a global two-dimensional double array, so that the function

which requires these values can easily access them. For a first precision test we worked with our

exact eigenvalues and therefore could see that the program works correctly.

2. Extensions to the code

To have a much easier life it was necessary to change the definition of the type definition site

in the program. Therefore the file lattice.h has been edited. With the help of our DEFLATION

macro we added the following code to the header file:
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1 #ifdef DEFLATION

2 wilson vector psi high ; /∗ solution vector high mode ∗/

3 wilson vector psi low ; /∗ solution vector low mode ∗/

4 wilson vector chi high ; /∗ source vector high mode ∗/

5 wilson vector chi low; /∗ source vector low mode ∗/

6 #endif

The function congrad_cl_wrapper() therefore changed, i.e. the function did not require the

temporary wilson vectors after this change. Also the functions ProjectResuidueVector() and

RestoreFullVector() did change in this matter - both are now using the new site variables.

To make life simpler again another build type has been added in the Maketemplate file. The

macro that we introduced to switch on the deflation code has been outsourced into a special

build instructed by that makefile. The mode to build the deflation application is been called

by using "su3_hmc_def" as make argument. This new build also uses a new version of the

d_congrad2_cl_field.c file. The new file is called d_congrad2_cl_def.c and contains several

code changes that will be explained in the next lines.

The code in the function congrad_cl() already contained some repetitions of code lines. Since

we now needed some of those code lines even more often (like applying the matrix on some wil-

son vector) we just outsourced those lines and set appropriate parameters. After all we added or

outsourced the following functions:

• project() - projects the source vector on the space spanned by the (approximate) eigen-

modes.

• xinv() - applies the operator X−1 on the source vector |s〉, i.e.

X−1|s〉 = (PLHPL)−1|s〉 =
∑
j,k

|j〉 (〈j|H|k〉)−1 〈k|s〉. (30)

• perform_h() - executes the operator H on the source vector.

• perform() - performs the whole left side of our new CG equation as shown in eq. 22 and as

listed in algorithm form in eq. 27. This has to be done in every CG iteration.

• source() - performs the whole right side of our new CG equation as shown in eq. 22. Unlike

the left side this only has to be computed at the beginning of the CG routine.
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• build_lookup() - builds the matrix with the elements 〈k|H|k′〉 and then calls the function

to create the actual inverse matrix out of this.

• build_inverse() - takes the input matrix and inverts it to obtain (〈k|H|k′〉)−1.

The xinv() function is kind of interesting since it does not only project it once but twice and

(since we have approximate eigenmodes 〈k|k′〉 6= δk,k′ in general) does multiplies by the inverse

matrix elements. Here we have:

1 register int i ;

2 register site ∗s;

3 int j , k;

4 complex cd, ctmp, css;

5 /∗ Make sure destination vector is empty ∗/

6 FORMYSITESDOMAIN(i,s)

7 clear wvec(&(dst[i ]) ) ;

8 /∗ this is the outer loop − |k><k| ∗/

9 for(k = 0; k < Nvecs h0; k++)

10 {

11 css . real = (Real)0; css .imag = (Real)0;

12 /∗ this is the inner loop − |k’><k’| ∗/

13 for(j = 0; j < Nvecs h0; j++)

14 {

15 cd. real = (Real)0; cd.imag = (Real)0;

16 /∗ get <j|src> ∗/

17 FORMYSITESDOMAIN(i,s)

18 {

19 ctmp = wvec dot(&(eigVec0[j][i]), &(src[ i ]) ) ;

20 CSUM(cd, ctmp);

21 }

22 /∗ multiply with <k|H|j>ˆ−1 ∗/

23 CMULREAL(cd, inv[k][j], ctmp); CSUM(css, ctmp);

24 }

25 /∗ and make it a vector again |k> ∗ 1/<k|H|j> ∗ <j|src> ∗/

26 FORMYSITESDOMAIN(i,s)

27 c scalar mult add wvec(dst + i, &(eigVec0[k][ i ]) , &css, dst + i);

28 }

Another interesting function is the source() routine. Here we see how the algorithm from the RHS

of eq. 27 can be applied in code. Basicly the same style of code had to be written for the routine
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perform(). The difference next to the order of function calls is in the length of that function. The

code for changing η to η̃ from eq. 23 looks like:

1 register int i ;

2 register site ∗s;

3 wilson vector ∗chi2, ∗chi1, ∗tmp;

4 /∗ allocate fields = malloc calls ∗/

5 FIELD ALLOC(chi2, wilson vector)

6 FIELD ALLOC(chi1, wilson vector)

7 FIELD ALLOC(tmp, wilson vector)

8 /∗ P L ( H ( Xˆ−1 |eta L> ) ) ∗/

9 xinv(chi low, tmp); perform h(tmp, chi1); project(chi1 , tmp);

10 /∗ |eta H> − [ P L ( H ( Xˆ−1 |eta L> ) ) − H ( Xˆ−1 |eta L> ) ] ∗/

11 FORMYSITESDOMAIN(i,s)

12 {

13 sub wilson vector(chi1 + i, tmp + i, chi2 + i);

14 sub wilson vector(&(s−>chi high), chi2 + i, chi new + i);

15 }

16 /∗Cleaning up∗/

17 free (tmp); free(chi1) ; free (chi2) ;

The functions to build the lookup table for the inverse matrix elements are straight forward. We

compute all N2 possibilites of 〈i|H|j〉 and store it in a two dimensional array. Then we start the

matrix inverter which basicly solves 〈i|H|j〉 = δij . We assume a non-singular matrix but we do

not assume a good ordering for performing the inversion. Therefore we built in a pivot-search to

always shuffle the rows in a way that we have the best possible accuracy.

3. Analysis of the performance after the extension

After all the extensions were implemented we had to run several tests and evaluate the results

obtained in those. A first test was to check if we get the same results as with the specialized

deflation method, i.e. that we use eigenmodes that have the same accuracy. In fig. 4 we can see

that the graph shows basicly the same behavior (especially with zero eigenmodes we get the same

result as with deflation off - which is the way it should be). However we note some differences

when we compare this graph to fig. 2.

We see that the conjugate gradient routines seems more optimized than before, because the slope

of the residue is really straight and does not stall. The difference is remarkable for more than
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FIG. 4: The residue of the general CG routine in dependence of the iterations at first call

two eigenmodes. After the correctness of our implementation is verified we wanted to answer the

question when deflation is really useful. To answer this we had to investigate how many eigenmodes

we have to set and which accuracy those eigenmodes have to fulfill in order to work properly.

Fig. 5 shows a comparison of different runs with two eigenmodes each with a different level

FIG. 5: Comparison shows which accuracy is required for two eigenmodes to decrease iterations
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of accuracy. We see that only 10−5 exact eigenmodes fulfill the minimum requirement of never

coming really close (i.e. touching) the black line which indicates the result that would have been

achieved without deflation.

While two eigenmodes seem to need high accuracy in order to work properly we can see that four

FIG. 6: Comparison shows which accuracy is required for four eigenmodes to decrease iterations

eigenmodes do a quite good job in decreasing iterations. Here it does not really matter if we take

10−3 or 10−5 as tolerance level for the eigenmode finder. However we do also see that a tolerance

of 10−2 would be to low. Since there is a big jump in the iteration count from 10−2 to 10−3

eigenmodes we have to find the best accuracy in between if we want to work with four eigenmodes.

The same conclusion can be drawn for 6, 8 or 10 eigenmodes. We always see that 10−2 is too low

and that 10−3 to 10−5 have all the same slope in our |r|2(i) diagram. The next question that then

arises is to see what we are actually solving. We know that we solve Hψ = η but since we changed

the CG routine in many ways we actually solved H̃ψH = η̃. Recalling the original CG routine that

solved Hψ = η instead of

fL(H)ψH = fR(ηH , ηL), (31)

can give us an answer to that question: how far is the obtained solution away from the real solution?

Fig. 7 shows basicly the same diagram as done in our first analysis of the general deflation with

fig. 4. We now see that a low amount of eigenmodes (in this case two) returns a pretty accurate
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solution while an higher amount of eigenmodes tends to be inaccurate. We also do see that this

FIG. 7: The residue when calling the original CG routine after obtaining the solution with deflation

system again behaves in a way binary. Before we’ve seen that from 10−2 to 10−3 accuracy we have

a huge jump in the iteration count, while 10−3 to 10−5 did not show any major differences. Here we

have the same with the accuracy of the solution. No deflation and two eigenmodes behave pretty

accurate while four eigenmodes and above need a certain amount of iterations with the original

CG routine in order to satisfy the inbuilt accuracy condition of the CG function. The height of

the jump from the end of the modified CG call to the beginning of the original CG is also pretty

much the same for 4 to 10 eigenmodes.

Until now we’ve seen that for two eigenmodes we need high accuracy, while for four eigenmodes

the obtained solution might need some fixing. The right answer must therefore lie between those

two settings. In order to find the right balance we have to vision two very important data sets

that are displayed in fig. 8. In the left plot we see the iteration count when we first called the

conjugate gradient function for a different number of eigenmodes (x-axis) and different tolerance

levels (labels). The right plot shows the iterations that could be computed per second - taking the

same two variables (number of eigenmodes and tolerance level) into consideration.

We see that a tolerance level of 10−2 is too low for any number of eigenmodes. We also do see that

the decrease of the effectiveness is quite linear in all cases, whereas the decrease of iterations does

slow down. This problem is therefore hard to balance. We need on the one hand a decent decrease
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of the number of total iterations on the one side and a quite low decrease (maybe no decrease at

all or even an increase) in the effective iterations per second. We made a further set of evaluations

FIG. 8: The iterations and effective iterations per second in dependence of accuracy and eigenmodes

containing the interesting number of eigenmodes (which obviously lies between two and four, i.e.

three eigenmodes) as well as the interesting region of tolerance between 10−2 and 10−4. With this

(improved) deflation algorithm we could reach the performance level of the standard conjugate

gradient level. We found that three eigenmodes combined with an accuracy of 10−3 only requires

169 iterations in total (for one trajectory, i.e. three conjugate gradient calls) compared to 238

iterations for zero eigenmodes (no deflation). The time was a just a little bit slower with a value

of 25.92953 s compared to 23.39351 s of the standard conjugate gradient. This was the best result

since both, lower and higher accuracy required more time and higher accuracy did not result in

sufficiently less iterations. The complete data can be found in tab. I in the appendix setion.

V. CONCLUSION

The deflation method discussed in this final report is certainly a good way to improve the conjugate

gradient routine. For this paper no optimizations in the deflation routines were implemented. With

optimizations in those new routines and a less expensive (but therefore less accurate) eigenmode

finder it will certainly be possible to get a performance boost. However the deflation has also

some negative sides. We need an eigenmode finder (which is expensive) and will probably get an

inaccurate solution, which will force us to call a standard CG routine in order to fix this. That we

came already close (without optimizations) to the performance of the previous CG execution time

should be enough motivation in order to spend more research time on this topic.
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Appendix I

The parameters used for evaluating the deflation

The parameters listed below represent the configuration that has been used for testing and evalu-

ating the deflation method described in this paper. The used lattice (b5.4k0.1272.d) was created

and provided by Tom DeGrand. The number of eigenmodes Number_of_h0_eigenvals as well

as the accuracy eigenval_tol_low has been changed for some evaluations in order to provide

information about the efficiency of the deflation.

1 prompt 0

2 nflavors 2

3 nx 8

4 ny 8

5 nz 8

6 nt 8

7 iseed 6721827

8 warms 0

9 trajecs 1

10 traj between meas 1

11 beta 5.4

12 kappa 0.1272

13 clov c 1.0

14 u0 1.0

15 microcanonical time step 0.2

16 steps per trajectory 1

17 max cg iterations 500

18 max cg restarts 10

19 error per site 1.0e−6

20 error for propagator 1.0e−6

21 Number of h0 eigenvals 2

22 Max Rayleigh iters 1000

23 Restart Rayleigh 10

24 Kalkreuter iters 10

25 eigenval tol low 1.0e−5

26 error decr low .3

27 reload serial b5.4k0.1272.d

28 forget
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Appendix II

Finding the optimum setting for those parameters

The following data has been obtained modifying the eigenvalue tolerance level as well as the number

of eigenmodes. The goal was to come as close as possible (or even surcome) to the performance

level that the standard conjugate gradient routine shows.

# accuracy iterations time iterations/sec

0 - 238 23.39351 0.09829205882353

3 0.008 249 30.01168 0.1205288353414

3 0.006 242 29.21451 0.1207211157025

3 0.004 220 28.51674 0.1296215454545

3 0.002 186 26.82217 0.1442052150538

3 0.001 169 25.92953 0.1534291715976

3 0.0008 169 26.09702 0.1544202366864

3 0.0006 168 27.5887 0.164218452381

3 0.0004 168 27.97978 0.1665463095238

3 0.0002 167 30.86919 0.1848454491018

3 0.0001 167 29.74855 0.1781350299401

TABLE I: Obtained data in order to find the optimum settings when running a full trajectory
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Appendix III

The new application - clover dynamical deflation

In order to keep on working with this code everything has been packed into a tarball and submitted

as a new application. Most filechanges were just pure cosmetics. Those changes include fixing the

tabspaces as well as including some comments and keeping everything in the same programming

style. The list of bigger changes includes:

• Maketemplate / a new target has been included called su3 hmc def. This target builds

everything like the su3_hmc application except that another macro is included which is

called DEFLATION. This macro activates the deflation mode in the code.

• generic_clover.h / the new macro has been used in order to prototype the new routines

that are included in this application.

• control.c / some bug fixes that have been detected by the EquivalenceTest() function

are included in this version.

• lattice.h / the new macro has been used in order to extend the node’s variables with

χL, χH as well as ψL, ψH .

• congrad_cl_wrapper.c / this code is now extended with some functions and does contain

some new macros. With the help of these macros it is possible to recall the standard conjugate

gradient function or print out a comparison of eigenmodes (EquivalenceTest()).

• d_congrad2_cl_def.c / the new conjugate gradient code is extendend with the new func-

tions that provide the projection, performing the Hamiltonian, building the inverse lookup

table and other functionalities. The call of the conjugate gradient function has been ex-

tended in order to still provide support for a standard CG call in order to make the recall

test for a solution.
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