
Mining Data Streams

Sommerakademie St. Johann im Ahrntal — AG 4
Introduction to streams and stream processing

Florian Rappl

Department of Theoretical Physics
University of Regensburg

1. September 2014

Florian Rappl: Streaming I 1/ 29



Florian Rappl: Streaming I 2/ 29



Outline

1 Introduction
Motivation
The stream data model

2 Sampling
Sliding window
Random reservoir

3 Filtering
Bloom filter
Flajolet-Martin algorithm

4 Conclusion

Florian Rappl: Streaming I 3/ 29



Introduction Motivation

Section 1

Introduction
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Introduction Motivation

Motivation

Problem Monitor network links for quantities such as

• Elephant flows (e.g., traffic engineering),

• Number of distinct flows or average flow size,

• Flow size distribution,

• Per-flow traffic volume,

• Entropy of the traffic,

• Traffic matrix estimation or others
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Introduction Motivation

Challenge

Network monitoring at high speed is challenging:

• Packets arrive every 25 ns on a 40 Gbps link

• DRAM cannot be used due to speed limitations

• We need to use SRAM for per-packet processing

• The per-flow state is too large for the SRAM

• Traditional solution not accurate enough
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Introduction The stream data model

The stream data model

• Input rate is controlled externally

• Input records (tuples) enter at a rapid rate

• We have one or more input ports (possible streams)

• We are not able to store the entire stream

• The system may be required to scale (more streams, more frequent)
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Introduction The stream data model

Illustration

Ad-hoc
queries

Incoming
streams

Standing
queries

Output

Limited
Working
Storage

Slow
Archive
Storage
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Introduction The stream data model

Stream sources

• Sensors (GPS, IoT, ...)

• Network traffic (Web, TCP/IP, ...)

• Data (Images, Videos, ...)

• Applications (Logging, Queries, ...)

• Simulations (Results, Steps, ...)
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Sampling Sliding window

Section 2

Sampling
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Sampling Sliding window

Sliding window

• Usually the cheapest solution

• Only store the last N items (scales best)

• Alternatively keep the items of the last t seconds

• Only appropriate for certain queries

• However, what if N is larger than the memory (volume)?

• Or if we have too many streams to handle (velocity)?
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Sampling Random reservoir

Random reservoir

• Estimation is key, exact choice may be irrelevant

• Shrink incoming size to 1/n-th of the original

• Generate a random number r ∈ [1, n]

• Consider the record if r = 1, otherwise discard

• In practice not as simple, since the query might require more
information
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Sampling Random reservoir

Example: Problem

• Incoming stream with tuples of (user, input, time)

• Question: What fraction f of a typical user’s input has been entered
twice?

• Assuming: s inputs occurred once, d twice, no input more often than
twice, we find

f =
d

s + d
(1)

• Naively we would pick only the n-th record, e.g., n = 10

• By considering each n-th record we get

f̃ = n
d

ns + (2n − 1)d
≤ f (2)
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Sampling Random reservoir

Example: First correction

• Need more sophisticated way of picking a query

• If user is known and tracked, then store the query

• If user is known and not tracked, discard

• Otherwise determine by random chance, n-th user

• Now we obtain

f̃ =
d

n

n

s + d
= f (3)
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Sampling Random reservoir

Example: Solution

• Much better than taking a random value is ...

• Hashing (in this case the user)

• Hash to n buckets

• Only consider the first bucket

• No need to store user and status, only query
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Filtering Bloom filter

Section 3

Filtering
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Filtering Bloom filter

Conditional checking

• We only consider the current record if certain conditions are met

• The conditions may require more information than available

• It is sufficient to know if the conditions are not met

• The required information is too large for memory

• The Bloom filter is the algorithm of choice
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Filtering Bloom filter

Bloom filter [Bloom (1970)]

• Basic idea: Use k hash functions hi to reduce information

• The set of source elements S contains m entries

• We want to know if an incoming element a ∈ S

• Storing S or matching against every element is not possible

• Use a bit-array v with n entries as lookup table

• Initialize the bit-array: Enable entries at hi (a) for a ∈ S , i ∈ [1, k]
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Filtering Bloom filter

Existence check for incoming a

Set i = 0

Compute
ri = hi (a)

Increment iIs i < k?

Get
values of

bit-array v

Return
k∧

i=1
vri

yes

no
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Filtering Bloom filter

Optimizing parameters

• Probability for a false positive is given by

P ≈
(

1− exp

(
−mk

n

))k

(4)

• The optimal number of hash functions is

k =
( n

m

)
ln 2. (5)

• We can also try to optimize n, the length of the bit-array
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Filtering Bloom filter

False positive probability
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Filtering Bloom filter

Example

• Dictionary with w unique words

• Select subset of size m ≤ w

• Stream words of a text with L� m words

• Check for false positive rate P

• Use optimal number of hashing functions
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Filtering Flajolet-Martin algorithm

Counting distinct elements

• The sum of the 0-th frequency moments is the number of distinct
elements

• Idea similar to the Bloom filter

• We use a hash function to reduce information

• The distribution of hash values yields information about the value
distribution

• In the end we have a probablistic estimate

• The Flajolet-Martin algorithm describes this procedure
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Filtering Flajolet-Martin algorithm

Flajolet-Martin algorithm [Flajolet, Martin (1985)]

Pick hash
function h

Get next
element a

Is a
defined?

Compute
hash

v ≡ h(a)

Tail length
ri = r(v)

R = maxi ri

Estimate
2R

yes
no
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Filtering Flajolet-Martin algorithm

Example

• Dictionary with w unique words

• Select subset of size m ≤ w

• Choose elements of this subset randomly with redraw

• Count the number of distinct elements

• Use ordinary string hashing function
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Filtering Flajolet-Martin algorithm

Sample estimates
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Conclusion

Section 4

Conclusion
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Conclusion

Conclusion

• Evaluate queries in detail

• Keep sliding window for fast estimations if possible

• Use random reservoir only if probabilities are obvious

• Embrace hash functions for randomness

• Determine if approximations are sufficient

• Always think about scaling
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Conclusion

Thank you!
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