
(HPSC 5576 ELIZABETH JESSUP)

HIGH PERFORMANCE SCIENTIFIC COMPUTING

 :: Homework / 2

 :: Student / Florian Rappl

2 problems / 20 points

HPSC5576 Florian Rappl HW|2

2

Problem 1

Task:

Programming assignment 3.7.1 from Pacheco's PPMPI textbook: Ring "Hello World" (p. 52), 10 pts.

Solution:

I just took the “Greetings” sample program and made some modifications. Before I explain my code I

would like to answer the questions.

Question (1):

Should the program send first and then receive, or receive and then send? Does it matter?

Answer (1):

We should send first, because we do it synchronized, i.e. we do not work with events and

asynchronous requests. Therefore we are going into listening mode when receiving, which means

that if all (processors) are just listening we will get stuck. On the other hand it is quite safe just to

send, because all sent messages will be buffered (those are blocking sends), i.e. we will not lose any

data if we keep on doing other things while we might just receive data.

Question (2):

What happens when the program is run on one processor? (If it breaks, fix it!)

Answer (2):

My program broke with the error message:

[0] fatal error

Fatal error in PMPI_Send: Other MPI error, error stack:

PMPI_Send(150): MPI_Send(buf=0x0020F924, count=100, MPI_CHAR, dest=0,

tag=0, MPI_COMM_WORLD) failed

PMPI_Send(125): DEADLOCK: attempting to send a message to the local process

without a prior matching receive

The problem is indeed the MPI_Send which (apparently) does not work in a loop (sending from one

node to the same node). The simple fix was to distinguish between and , where is

the number of processors.

The output with p=1:

Greetings from process 0!

The output with p=2:

Greetings from process 1!

Greetings from process 0!

The output with p=32:

HPSC5576 Florian Rappl HW|2

3

Greetings from process 31!

Greetings from process 30!

Greetings from process 29!

Greetings from process 28!

Greetings from process 27!

Greetings from process 26!

Greetings from process 25!

Greetings from process 24!

Greetings from process 23!

Greetings from process 22!

Greetings from process 21!

Greetings from process 20!

Greetings from process 19!

Greetings from process 18!

Greetings from process 17!

Greetings from process 16!

Greetings from process 15!

Greetings from process 14!

Greetings from process 13!

Greetings from process 12!

Greetings from process 11!

Greetings from process 10!

Greetings from process 9!

Greetings from process 8!

Greetings from process 7!

Greetings from process 6!

Greetings from process 5!

Greetings from process 4!

Greetings from process 3!

Greetings from process 2!

Greetings from process 1!

Greetings from process 0!

About the code:

First of all the greetings message is generated on every node. After that generation we distinguish

between the two cases. In the case we just print the generated message. In the other case

 we send the message to the next node determined by , i.e. always to

 except if the rank is (the last node) – this one will send to process 0.

This starts our circle of messages to process 0 (the root process). While process 0 has now

messages to receive (all messages of the other processors plus the one which was originally

sent by it), process 1 has only 1 message to receive, process 2 has 2 messages and so on.

In the end while process 0 just prints out all received messages, all the other nodes are just sending

them again using the same determinism as before.

Code printout:

#include <stdio.h> 1
#include <string.h> 2
#include "mpi.h" 3
 4
main(int argc, char* argv[]) { 5
 int my_rank; /* rank of process */ 6
 int p; /* number of processes */ 7
 int source; /* rank of sender */ 8

HPSC5576 Florian Rappl HW|2

4

 int dest; /* rank of receiver */ 9
 int tag = 0; /* tag for messages */ 10
 char message[100]; /* storage for message */ 11
 char my_name[64]; /* name of machine */ 12
 int my_name_len; /* length of my_name */ 13
 MPI_Status status; /* return status for */ 14
 /* receive */ 15
 int length = 1; 16
 17
 /* Start up MPI */ 18
 MPI_Init(&argc, &argv); 19
 20
 /* Find out process rank */ 21
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 22
 23
 /* Find out number of processes */ 24
 MPI_Comm_size(MPI_COMM_WORLD, &p); 25
 26
 /* Modified from Pacheco -- print machine name */ 27
 MPI_Get_processor_name(my_name, &my_name_len); 28
 29
 sprintf(message, "Greetings from process %d!", 30
 my_rank); 31
 32
 /* Create message */ 33
 if(p > 1) 34
 { 35
 MPI_Send(message, 100, MPI_CHAR, (my_rank + 1) % p, 36
 tag, MPI_COMM_WORLD); 37
 38
 if(my_rank == 0) 39
 length = p; 40
 else 41
 length = my_rank; 42
 43
 for (source = 0; source < length; source++) 44
 { 45
 MPI_Recv(message, 100, MPI_CHAR, (my_rank-1+p) % p, tag, 46
 MPI_COMM_WORLD, &status); 47
 48
 if(my_rank == 0) 49
 printf("%s\n", message); 50
 else 51
 MPI_Send(message, 100, MPI_CHAR, (my_rank + 1) % 52
p, 53
 tag, MPI_COMM_WORLD); 54
 } 55
 } 56
 else 57
 printf("%s\n", message); 58
 59
 /* Shut down MPI */ 60
 MPI_Finalize(); 61
} /* main */62

HPSC5576 Florian Rappl HW|2

5

Problem 2

Task:

Programming assignment 4.7.2 from Pacheco's PPMPI textbook: Simpson's Rule (p. 64), 10 pts.

Solution:

I decided to distribute all the function values over the processors. Since we have 3 different function

values for each segment (Simpson’s rule), we have 1 shared function value at the boundaries

(beginning and end). The middle one with weighting 4 is always a single one. Therefore we have to

weigh the shared ones with 2 instead of 1. Overall in an n segment integration using Simpson’s rule

we have function values. Therefore the best processor count is obviously – everything

above it is redundant and everything below it results either in idle time for some processors at the

final stage (with processors being worst case) or a longer computation time (worst case here is a

single processor – it has to do function value evaluations plus the whole summation). Since a

parabola is exact I’ve decided to pick () as function. The function as well as the interval is

hardcoded – even though it would not require much skill to determine the interval over a command

line argument (since this has been coded with the number of segments – it is just a simple

enhancement).

The output with p=1 and n=10000:

Precision: n = 10000

Cores: p = 1

Area: A = 21333.000000

Lower Bound: a = 1.000000

Upper Bound: b = 40.000000

About the command line parser:

Since it has been a while working in pure C I do not know if my solution there is the best or if it could

be somehow improved (there is always room for improvement). I am just using the number of

arguments argc and go through that array of strings (char*) starting with the first argument (since

argv[0] is just the name of the program – reflected).

Next I am just using the in the string.h inbuilt function to compare two strings and have a closer look

if I actually get a match for “-n” (the number of intervals). For “-v” I activate the verbose mode and

for “-?” I am printing a short help for the user concerning the usage of the command line arguments.

The closer look for the number of intervals is just looking if there is a next argument (as there should

be one – a number) and if so – whether it really is a number.

If it is not a number / or a wrong number (below 1) I give out an error and reset n to my standard

number of intervals (I actually did use that number twice in the code – could have been done more

elegant using a macro – but I wanted to preserve the readability of the code). The interval could have

been implemented using the “-n” code for “-a” and “-b” as well.

HPSC5576 Florian Rappl HW|2

6

The output with p=16, activated verbose option and n=10:

P: coe. loop x f(x)

0: 1 0 1.000000 1.000000

0: 2 16 32.200000 1036.840000

1: 4 1 2.950000 8.702500

2: 2 2 4.900000 24.010000

3: 4 3 6.850000 46.922500

4: 2 4 8.800000 77.440000

5: 4 5 10.750000 115.562500

6: 2 6 12.700000 161.290000

7: 4 7 14.650000 214.622500

8: 2 8 16.600000 275.560000

9: 4 9 18.550000 344.102500

10: 2 10 20.500000 420.250000

11: 4 11 22.450000 504.002500

12: 2 12 24.400000 595.360000

13: 4 13 26.350000 694.322500

14: 2 14 28.300000 800.890000

15: 4 15 30.250000 915.062500

1: 4 17 34.150000 1166.222500

2: 2 18 36.100000 1303.210000

3: 4 19 38.050000 1447.802500

4: 1 20 40.000000 1600.000000

Precision: n = 10

Cores: p = 16

Area: A = 21333.000000

Lower Bound: a = 1.000000

Upper Bound: b = 40.000000

Why the implementation is correct:

Most of the things in the code are pretty “standard”, i.e. the do not need to be explained. The

implementation for the verbose option may be a little bit strange but since this option is just to be a

debugging helper / information giver there was no need in implementing this function very fancy or

effective. The most interesting part is the calculation of the function values. The summation of the

subareas would be more effective in a tree (as I recommended in the lecture) but since this was not

part of the task I just ignored this issue. If we take for example an integration using Simpson’s rule

with we obtain

coeff. 1 4 2 4 2 4 2 4 1

j*h

loop 0 1 2 3 4 5 6 7 8

This makes values and the coefficient distribution I explained in the first paragraph. Therefore

we can see that for our loop we need to go from to – including both values (therefore

iterations). Also we see that we can determine the coefficient by using if and a modulo operation. If

HPSC5576 Florian Rappl HW|2

7

the loop is at 0 or we set the coefficient to 1 – else we determine the coefficient using

 () , which gives us 2 for even numbers and 4 for odd numbers.

At last we always add the half of to our local a (which has been set in the beginning properly) times

the number of processes running. The in the program is already to reduce the number of

divisions needed. So overall I am splitting up the big function evaluation loop (from 0 to), so that

each process begins at his number and goes in steps which are equal to the number of processes.

Code printout:

#include <stdio.h> 1
#include <string.h> 2
#include "mpi.h" 3
 4
double fx(double x); /* prototype of f(x) */ 5
 6
int main(int argc, char* argv[]) 7
{ 8
 /* Standard header */ 9
 int my_rank; /* rank of process */ 10
 int p; /* number of processes */ 11
 int source; /* rank of sender */ 12
 int dest; /* rank of receiver */ 13
 int tag = 0; /* tag for messages */ 14
 char message[100]; /* storage for message */ 15
 char my_name[64]; /* name of machine */ 16
 int my_name_len; /* length of my_name */ 17
 MPI_Status status; /* return status for recv */ 18
 19
 /* Simpson rule specific */ 20
 int n = 10000; /* precision */ 21
 int i; /* some loop */ 22
 double a = 1.0; /* starting point */ 23
 double b = 40.0; /* final point */ 24
 double h; /* spacing */ 25
 double total = 0.0; /* total subarea */ 26
 double area = 0.0; /* total area */ 27
 double loc_a; /* local starting */ 28
 int verbose = 0; /* verbose bool */ 29
 double fvalue; /* stored f(x) */ 30
 31
 /* Command line args parser */ 32
 for(i = 1; i < argc; i++) 33
 { 34
 /* if we have the -n */ 35
 if(strcmp(argv[i],"-n") == 0) 36
 { 37
 /* but nothing else specified */ 38
 if(i == argc - 1) 39
 { 40
 printf("A number of intervals must be specified 41
using -n.\n"); 42
 break; 43
 } 44
 /* or we probably have a number */ 45
 n = atoi(argv[++i]); 46
 if(n < 1) 47
 { 48
 /* but that is not a valid number */ 49

HPSC5576 Florian Rappl HW|2

8

 printf("Wrong input for n. Must be greater than 50
0.\n"); 51
 n = 10000; 52
 } 53
 } 54
 /* if we have the verbose statement */ 55
 else if(strcmp(argv[i],"-v") == 0) 56
 verbose = 1; 57
 /* if we have some help statement */ 58
 else if(strcmp(argv[i],"-?") == 0) 59
 { 60
 printf("Command line arguments\n"); 61
 printf("======================\n"); 62
 printf("-n X\t sets interval to X\n"); 63
 printf("-v\t verbose mode\n"); 64
 printf("-?\t displays this help\n"); 65
 printf("======================"); 66
 return; 67
 } 68
 } 69
 70
 /* Calculate spacing */ 71
 h = (b-a)/(double)n/2.0; 72
 73
 /* Start up MPI */ 74
 MPI_Init(&argc, &argv); 75
 76
 /* Find out process rank */ 77
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 78
 79
 /* Find out number of processes */ 80
 MPI_Comm_size(MPI_COMM_WORLD, &p); 81
 82
 /* Begin calculating */ 83
 loc_a = a + (double)my_rank * h; 84
 85
 if(verbose == 1 && my_rank == 0) 86
 printf("P: coe.\tloop\tx\t\tf(x)\n"); 87
 88
 /* Best performance for n+1 % p == 0 else some */ 89
 /* idle time for n+1 % p processors */ 90
 for(i = my_rank; i <= 2*n; i+=p) 91
 { 92
 if(i == 2*n || i == 0) 93
 dest = 1; 94
 else 95
 dest = 2 + (i % 2) * 2; 96
 97
 fvalue = fx(loc_a); 98
 99
 /* add new "area parts to the total (sub)area */ 100
 total += (double)dest * fvalue * h / 3.0; 101
 102
 if(verbose == 1) 103
 { 104
 sprintf(&message, "%d: %d\t%d\t%f\t%f", 105
 my_rank, dest, i, loc_a, fvalue); 106
 if(my_rank == 0) 107
 printf("%s\n", message); 108
 else 109
 MPI_Send(&message, 100, MPI_CHAR, 0, 0, 110

HPSC5576 Florian Rappl HW|2

9

 MPI_COMM_WORLD); 111
 } 112
 113
 /* just to save some multiplication and addition */ 114
 if(i + p <= 2 * n) 115
 loc_a += (double)p * h; 116
 } 117
 118
 if(verbose == 1 && my_rank == 0) 119
 { 120
 for(i = 1; i <= 2 * n; i++) 121
 if(i % p != 0) 122
 { 123
 MPI_Recv(&message, 100, MPI_CHAR, i%p, 0, 124
 MPI_COMM_WORLD, &status); 125
 printf("%s\n", message); 126
 } 127
 } 128
 129
 /* Collect all the (sub)areas or send the (sub)area */ 130
 if(my_rank == 0) 131
 { 132
 /* Adding the own subarea to the total one */ 133
 area += total; 134
 135
 /* Doing a manual Reduce */ 136
 for(i = 1; i < p; i++) 137
 { 138
 MPI_Recv(&total, 1, MPI_2DOUBLE_PRECISION, i, 0, 139
 MPI_COMM_WORLD, &status); 140
 area += total; 141
 } 142
 143
 /* Print outcome */ 144
 printf("Precision:\tn = %d\n", n); 145
 printf("Cores:\t\tp = %d\n", p); 146
 printf("Area:\t\tA = %f\n", area); 147
 printf("Lower Bound:\ta = %f\n", a); 148
 printf("Upper Bound:\tb = %f\n", b); 149
 } 150
 else 151
 MPI_Send(&total, 1, MPI_2DOUBLE_PRECISION, 0, 0, 152
MPI_COMM_WORLD); 153
 154
 /* Shut down MPI */ 155
 MPI_Finalize(); 156
 157
 return 0; 158
} /* main */ 159
 160
double fx(double x) 161
{ 162
 return x*x; 163
} /* function */ 164

