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1 Concepts of probability

In the theory of common sense we have a

• fair coin with 2 possible outcomes head (H) and tail (T) and a

• fair die (pl. dice) with outcomes from 1 to 6.

In this context fair means unbiased.

1.1 Random numbers, probabilities, simple rules

Definition 1.1.1 A sequence x1, x2, ..., xN of numbers is called random, if the probability for

xN+1 to have a value of x does not depend on the previous numbers.

An example: Sequences like HTHTHTHT or HHHHHHH let us think that the next

event must be H in both cases. This is common sense and not a good random sequence.

When there’s a pattern it’s not a random sequence.

In reality we can never be sure if the sequence is random. A truly random sequence

is infinite. In computers we have quasi random numbers. This means they are random

FAPP (for all pratical purposes).

Assigning probabiliy We have to distinguish between

• Trial, process:

– Tossing (flipping) a coin or

– throwing a dice.

• Outcome of a trial:
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Chapter 1. Concepts of probability

– H, T,

– 1, 2, 3, 4, 5, 6 or

– all so called microstates.

• Sample space (which is the set of all outcomes):

– {H,T},

– {1, 2, 3, 4, 5, 6} or

– all so called phase space.

For a fair coin we obtain

• p(H) the probability of outcome H,

• p(T) the probability of outcome T,

• p(H) = p(T) = 1
2 .

Similar for a fair die:

p(1) = p(2) = p(3) = p(4) = p(5) = p(6) =
1
6
.

In general for a probability we require that

p(outcome i) = pi ≥ 0.

As boundary condition we have

∑
outcomes i

pi = 1 (something always happens).

For continuous outcomes x ∈ R we find that

pi → p(x)dx

is the possibility to find the outcome in [x, x + dx]. While pi is dimensionless, p(x) is a

probability density (think of |ψ(x)|2). So we have to normalize it. The normalization of

the continuous distribution is
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Chapter 1. Concepts of probability

∫
∞

−∞

p(x)dx = 1.

The simplest example for this would be

p(x) =

 1
b−a , x ∈ [a, b],

0, else.
.

Addition rule The probability that two independent outcomes i or j occur is

p(i or j) = p(i) + p( j).

Example: The probability that a die gives 1 or 3 is

p(1 or 3) = p(1) + p(3) =
1
6

+
1
6

=
1
3
.

Multiplication rule The probability that two independent outcomes i and j occur is

p(i and j) = p(i) · p( j).

Example: The probability that a die gives 1 and (then) 3 is

p(1 and 3) = p(1) · p(3) =
1
6

1
6

=
1
36
.

Example: Suppose a DNA evidence is likely with probability 1 − 10−6. The chances

are 106 : 1 that the defendant is guilty. The systematic error in collecting, analysing,

handling, reporting DNA evidence is ≈ 1%.

Question: What is the probability that the defendant is guilty?

1.2 Mean values, standard deviations

• The mean value or average of x is defined as
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Chapter 1. Concepts of probability

x = 〈x〉 =
∑

i

xip(i) =

∫
∞

−∞

dxxp(x).

• The mean square of x is defined as

x2 = 〈x2
〉 =

∑
i

x2
i p(i) =

∫
∞

−∞

dxx2p(x).

• The variance or dispersion of x is defined as

σ2
x = x2 − x2

= (x − x)2.

• The standard deviation or r.m.s. (root mean square) of x is defined as

σx ≡ +

√
σ2

x.

As an example we consider a coin with H = 1 and T = 0. We obtain

x = 1 · p(H) + 0 · p(T) =
1
2
,

x2 = 12
· p(H) + 02

· p(T) =
1
2
,

σ2
x = x2 − x2

=
1
2
−

1
4

=
1
4
,

σx =

√
σ2

x =
1
2
.

This means that the actual values of the outcome are likely in the interval [x−σx, x+σx].

For the coin we found 1
2 ±

1
2 .

1.3 Uncertainty, disorder, entropy

Shannon did some research in the 1940’s. He found that that a system is in order when

not much (the least) information (knowledge) about a system is required in order to

describe it, while a system is in disorder when a lot of (more than the least) information

is required in order to reconstruct it.
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Chapter 1. Concepts of probability

Example: A child in a house with n rooms. We bring the child in the morning to the

house. We then come back in the evening to see in which room the child is.

Task: Calculcate the probability (p(i)) for the child being in room i. We already know

that there are two main cases in this scenario.

1. A certain (well-behaved) child: We have full knowledge of it. So the probability

will be

p(i) = δi,i0 ,

where i0 is the room in which the child stays all the time.

2. An uncertain child (this one is running around): We have the least knowledge of

where he or she is. We probability will be

p(i) =
1
n
.

Our task is now to find a function of p(i) which cover our main cases. In the case

of minimum uncertainty we have to obtain a minimum of p(i) while in the case of

maximum uncertainity we have to obtain a maximum. In addition we require that the

function is additive.

Example: Two children and two houses. We then get for our function S that

S = S1 + S2,

where S1 is the function for the first child in the first house and S2 is the function for

the second child in the second house. So we have to obtain

p(1, 2) = p(1) · p(2).

Satz 1.3.1 (Shannon) There is only one such function:

S = −k
∑

i

pi ln pi = −kln p, (1.1)

where pi ≡ p(i) and k is some constant. This function is called Shannon’s (information) entropy.

Example: If p(i) = δi,i0 we get S = −k1 ln 1 = 0. If p(i) = 1
n we obtain that S = k ln n.
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Chapter 1. Concepts of probability

1.4 Maximum uncertainty distribution

Task: Find pi such that S has a maximum and the average value of a quantity Ai,

A =
∑

i

piAi,

is fixed. This is an optimization problem with Lagrange multipliers. The function to

be maximized is

S = −k
∑

i

pi ln pi,

with the constraints that

∑
i

pi = 1 and
∑

i

piAi = A.

Calculating we obtain

0 !
= δ

S − λ1(
∑

i

pi − 1) − λ2(
∑

i

piAi − A)

 ,
δS = −k

∑
i

(
δpi ln pi + pi

1
pi
δpi

)
=

= −k
∑

i

(ln pi + 1)δpi.

⇒ 0 = −k
∑

i

(ln pi + 1)δpi − λ1

∑
i

δpi − λ2

∑
i

Aiδpi =

= −k
∑

i

(ln pi + 1) − λ1

∑
i

1 − λ2

∑
i

Ai =

=
∑

i

(
ln pi + 1 +

λ1

k
+
λ2

k
Ai

)
.

Finally we get individually

ln pi + 1 +
λ1

k
+
λ2

k
Ai = 0,

which gives us
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Chapter 1. Concepts of probability

pi = exp
(
−

(
1 +

λ1

k
+
λ2

k
Ai

))
.

The coefficients λ1 and λ2 can be determined by the constraints above. We can simplify

the solution for pi in order to get

pi =
1
Z

exp
(
−
λ2

k
Ai

)
, Z =

∑
i

exp
(
−
λ2

k
Ai

)
. (1.2)

1.5 Useful probability distributions and central limit

theorem

1.5.1 Binomical distribution

Suppose an event A can occur with probability p. Then, out of N trials, the event A will

be found exactly k times with the probability

p(N)
k =

 N

k

 pk(1 − p)N−k. (1.3)

In this formula we have

•

 N

k

 the combinatorial factor, read ’N choose k’ which is N!
(N−k)!k! . That is the

number of ways to choose k objects out of N.

• pk the probability to find k events A.

• (1 − p)N−k the probability that the remaining N − k events are not A.

Example: Suppose I flip a coin 100 times. What is the probability that H comes 20

times?

⇒ p(100)
20 =

 100

20

 1
220

1
280 = 4.22 · 10−10.

Example: Suppose you play darts (L little squares). You can shoot (throw) N times.

What is the probability to hit the same (pre-determined) little square 2 times when

p = 1
L?
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Chapter 1. Concepts of probability

⇒ p(N)
2 =

 N

2

 1
L2

(
1 −

1
L

)N−2

.

Question: What is the probability that in the first two throws I hit the same little square?

It is 1
L2 .

Another question: What is the probability that in the first two throws only I hit the

same little square? In all other throws I do not hit it. It is 1
L2

(
1 − 1

L

)N−2
.

Let us calculate the average value of k and variance σ2
k .

• For the mean value we calculate:

k =

N∑
k=0

kP(N)
k =

N∑
k=0

k

 N

k

 pk( 1 − p︸︷︷︸
≡q

)N−k =

=

N∑
k=0

k
N!

(N − k)!k!
pkqN−k = p

∂
∂p

N∑
k=0

N!
(N − k)!k!

pkqN−k =

= p
∂
∂p

(p + q)N = pN( p + q︸︷︷︸
=1

)N−1 = pN,

which is the result we expected.

• Now we do the same for k2:

k2 =

N∑
k=0

k2P(N)
k =

(
p
∂
∂p

)2

(p + q)N = p
∂
∂p

(
Np(p + q)N−1

)
=

= Np
(
(p + q)N−1 + (N − 1)p(p + q)N−2

)
= Np(1 + pN − p).

• So we get for the variance

σ2
k = k2 − k

2
= Np(1 + pN − p) − p2N2 = Np(1 − p).

• Finally we have the standard deviation as

σk =
√

Np(1 − p), ⇒
σk

k
=

√
1 − p

p
1
√

N
.
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Chapter 1. Concepts of probability

Figure 1.1: Plot of a binomical distribution with FWHM 2
√

Np(1 − p) for p = 1
2 and

N = 10.

1.5.2 Poisson distribution

The Poisson distribution is given as

Pk =
λk

k!
exp(−λ), k = 0, 1, 2, ...,∞, (1.4)

where λ is the parameter of the distribution. Let us now calculate the average k and

variance σ2
k .

• For the average value we get

k =

∞∑
k=0

k
(
λk

k!

)
exp(−λ) = exp(−λ)

∞∑
k=1

λk

(k − 1)!
=

= λ exp(−λ)
∞∑

k=1

λk−1

(k − 1)!
= λ exp(−λ)

∞∑
k=0

λk

k!︸ ︷︷ ︸
exp(λ)

= λ.

• By exactly the same we get
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Chapter 1. Concepts of probability

k2 =

∞∑
k=0

k2

(
λk

k!

)
exp(−λ) = exp(−λ)

∞∑
k=1

k
λk

(k − 1)!
=

= exp(−λ)λ
∞∑

k=0

(k + 1)
λk

k!
= exp(−λ)λ

 ∞∑
k=0

k
λk

k!
+

∞∑
k=0

λk

k!

 =

= λ2 + λ.

• For the variance we get

σ2
k = k2 − k

2
= λ2

− λ2 + λ = λ.

• So we found the standard deviation which is
√
λ. The relative error is

σk

k
=

1
√
λ
.

We will show that the poisson distribution is a limiting case of the binomical one as

N→∞ (many experiments) and p→ 0 (small probability).

p(N)
k =

N!
(N − k)!k!

pk(1 − p)N−k λ=pN
=

N!
(N − k)!k!

(
λ
N

)k (
1 −

λ
N

)N−k

=

=
N · (N − 1) · · · (N − k + 1)

Nk︸                           ︷︷                           ︸
≈1

λk

k!

(1 − λN )N
λ

λ︸         ︷︷         ︸
≈exp(−1)λ=exp(−λ)

(
1 −

λ
N

)−k

︸     ︷︷     ︸
≈1

=

=
λk

k!
exp(−λ).

1.5.3 Normal (Gaussian) distribution

It is a continuous distribution for a variable x:

p(x) =
1

√
2πσ2

exp
(
−

(x − a)2

2σ2

)
. (1.5)

Let us calculate the average and variance.
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Chapter 1. Concepts of probability

Figure 1.2: Plot of a Gaussian distribution with FWHM 2σx for a = 5 and σx = 2.

• For the mean value we calculate, that

x =

∫
∞

−∞

dxxp(x) =
1

√
2πσ2

∫
∞

−∞

dxx exp
(
−

1
2

(x − a)2

σ2

)
=

=
1

√
2πσ2

∫
∞

−∞

dx(x − a) exp
(
−

1
2

(x − a)2

σ2

)
︸                                  ︷︷                                  ︸

=0

+

+
1

√
2πσ2

a
∫
∞

−∞

dx exp
(
−

1
2

(x − a)2

σ2

)
︸                         ︷︷                         ︸

=a

= a.

• In the next step we get

x2 =
1

√
2πσ2

∫
∞

−∞

dxx2 exp
(
−

1
2

(x − a)2

σ2

)
=

= σ2 + a2.

• So we get what we expected:

σ2
x = x2 − x2

= σ2 + a2
− a2 = σ2,

σx = σ.
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Chapter 1. Concepts of probability

The normal distribution also follows from the binomical one, in the limit of N → ∞

and taking k→ x, centered at k ≈ a, and considering expansion around k. See Gold and

Tobachnik for a proof.

1.5.4 Central limit theorem

Suppose x1, x2, x3, ...xN are distributed according to some distribution p(x). The average

of x is x and variance of the distrubtion, σ2
x, exists (not infite). Then the average

yN =
1
N

N∑
i=1

xi,

are distributed according to

P(yN) =
1√

2πσ2
y

exp
(
−

1
2

(yN − x)2

σ2
y

)
,

and σy = σx
√

N
. For a proof see Gold and Tobachnik.

Alternativly for the sums

SN =

N∑
i=1

xi

the distribution is

p(SN) =
1√

2πσ2
S

exp
(
−

1
2

(SN −Nx)
σ2

S

)
.

So the standard deviation is

σS = σx

√

N.

The relative error is again σx
√

N
xN ∝

1
√

N
.

Example: Shopping in a supermarket. Typical price is approximently x = 2 e. Buy

N ≈ 20 items. Guess the total price. What is the total error when σx = 0.5 e. The

average sum is Nx which is 40 e. The total error is
√

200.5 ≈ 2 e. So we have (40 ± 2)

e.
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2 Classical and quantum microstates

2.1 Configuration, momentum and phase space

The from the classical probability theory known systems coin or dice now go over to

more complicated systems like gas, solids, etc.

We need to find the sample space for the generic physical system. We first discuss the

classical systems. Consider a collection of N particles. Assume that the particles cannot

escape from the box. We say they are confined. Assume also, that the total energy is

preserved, i.e. particles do not give away energy to the walls of the box.

⇒ (N,V,E) are fixed.

• The collection of the positions of particles is

Q = (~r1,~r2, ...,~rN) = (x1, y1, z1, ..., xN, yN, zN),

which forms the configuration space. This space is 3N dimensional.

• The collection of the momenta of the particles is

P = (~p1, ~p2, ..., ~pN),

which forms the momentum space. This space is again 3N dimensional.

• The state of the system of N particles is uniquely defined / determined by the

collection (Q,P). We call this collection the phase space. It has 3N + 3N = 6N

dimensions. It is huge!

The important question is: How big is the phase space? We will argue that the phase

space is the sample space. A leap in thinking brought us to the conclusion that...
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Chapter 2. Classical and quantum microstates

the only preserved quantity, constraining the phase space (in addition to V, N) is the

energy! Large systems ’forget’ their initial conditions, i.e. all other integrals of motions

are ’forgotten’.

2.2 Phase space volume, density of states

We introduce 3 measures for the phase-space volume, Γ, g and Ω.

• First of all we introduce

Γ(E) =

∫
dQdP

h3n Θ(E −H(Q,P)) =

∫
H(Q,P)≤E

dQdP
h3n , (2.1)

with the step function

Θ(x) =

 1, x ≥ 0,

0, x < 0.

H(Q,P) is the Hamiltonian of the system. So Γ(E) tells us the volume of the phase

space up to the energy E. This brings us to h which is the yet to be determined con-

stant (which will be the Planck constant), of dimension [xp] =kgm2s−1, introduced

to make Γ dimensionless.

• Second we introduce the density of state

g(E) =
dΓ(E)

dE
=

∫
dQdP
h3N δ(E −H(Q,P)). (2.2)

The dimension of g(E) is [ 1
E ]=J−1.

• Finally we introduce the number of states

Ω(E) = g(E)δE. (2.3)

This is again dimensionless and gives us the number of states in the interval

[E,E + δE].
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Chapter 2. Classical and quantum microstates

Example: 1-dimensional linear harmonic oscillator

We set our Q = x and P = p. We already know that

H =
1

2m
p2 +

1
2

mω2x2.

The ’surface’ of the equal energy is

H(Q,P) = E ⇒
1

2m
p2 +

1
2

mω2x2 = E ⇒
p2

2mE
+

x2

2E
mω2

= 1.

To calculate the volume we use

Γ(E) =
area of ellipse

h
=
πab

h
=
π
√

2mE
√

2E
mω2

h
=

E
~ω
.

So we get

g(E) =
dΩ

dE
=

1
~ω

and Ω(E) = g(E)δE =
δE
~ω
.

Important example: Phase space volume of classical ideal gas

We have N particles in an ’ideal’ gas (no/weak interacting particles) with no potential

energy, i.e.

H =
~P2

2m
=

N∑
i=1

~p2
i

2m
.

Our task is now to calculate Γ(E), which is an integral

Γ(E) =

∫
H(Q,P)≤E

dQdP
h3N =

1
h3N

∫
dQ

∫
∑N

i=1

~p2
i

2m≤E
d3p1d3p2 · · · d3pN.

We already know that

∫
dQ = VN.

The remaining momentum integral is the volume of a sphere in 3N dimensions of

radius
√

2mE. Generally we have
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Chapter 2. Classical and quantum microstates

~p2
1 + ... + ~p2

N = p2
1x + p2

1y + p2
1z + ... + p2

Nx + p2
Ny + p2

Nz ≤ (
√

2mE)2.

This is a mathematical problem. The solution is discussed in appendix 8.1. We now

know that

R =
√

2mE, n = 3N, ⇒

∫
P2≤2mE

dP =
π

3N
2

Γ
(

3N
2 + 1

) (2m)
3N
2 E

3N
2 =

(2πmE)
3N
2

( 3N
2 )!

.

The measures

Γ(E) =
VN

h3N

(2πmE)
3N
2

(3N
2 )!

∝ E
3N
2 ,

g(E) =
dΓ

dE
=

VN

h3N

(2πmE)
3N
2

( 3N
2 )!

3N
2E

=
Γ(E)
2
3 ( E

N )
,

Ω(E) = Γ(E)
δE

2
3 ( E

N )
.

All thermodynamics of classical gases follows from here!

Important remark The phase-space volume change very very fast with E. Suppose

there are N = 1023 particles. If you change E by δE ≈
(

E
N

)
2
3 , which is the energy of just

one particle, the volume of Γ increases twice:

Ω(E) ≈ Γ(E)!

2.3 The ergodic hypothesis

We consider a coin with H = 0 and T = 1. We can now calculate the average value:

1. By flipping the coin many times: HHTHTT and so on we get
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Chapter 2. Classical and quantum microstates

avg =
0 + 0 + 1 + 0 + 1 + 1

6
=

flip(t = 1) + flip(t = 2) + ... + flip(t = 6)
number of flips

=

=

[
flip(t = 1) + flip(t = 2) + ... + flip(t = 6)

]
∆t

number of flips · ∆t
=

=
1
T

∑
i flip(ti)∆t

1
T

∫
dtflip(t)

 time average, i.e. average over time,

where ∆t is the difference in time between the flips and T is the total time.

2. Guess the answer by finding the sample space and the probabilities for the events.

So we have a guess, like

pH=0 =
1
2
, pT=1 =

1
2
.

The average is then

avg = 0 · pH + 1 · pT =
∑
i=H,T

i · pi →

∫
dxxp(x) =

1
2
.

This is the ensemble average - an ensemble is the sample space. In this case it

would be (H,T).

The ergodic hypthesis then states that time average (T → ∞) is equal to the ensemble

average. Flipping a coin is an ergodic process as long as the flipper explores the whole

ensemble.

Example for a non-ergodic-process: An ant cannot flip the coin due to the energy

barrier. So the time-average is H = 0 , 1
2 .

Important: H,T need to have the same (gravitational) energy - but in this scenario there

is an energy barrier.

Example: Glass (amorpheous material) has also energy barriers which prevent the

material to be in a crystal formation.

Also in an experiment we measure the time averages

Atime =
1
T

∫ T

0
dtA(t).
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Chapter 2. Classical and quantum microstates

In theory due to the high number of particles (1023) we have

Aensemble =

∫
phase space

dQdPA(Q,P)%(Q,P),

where %(Q,P) is a probability density in phase space. The ergodic hypothesis now

states, that

Atime

∣∣∣
T→∞

= Aensemble. (2.4)

2.4 Phase-space invariance and Liouville’s theorem

We already know that phase-space trajectories cannot cross because if they would cross,

the system would have two futures. The question now is (for a phase-space volume):

how much does the volume of a phase-space region change in time?

The answer is that it does not change! We are now going to proof this.

Proof Denote qα as coordinates and pα as momenta with α = 1, 2, ..., 3N. So we have

(q1, q2, ..., q3N) = (x1, y1, z1, x2, y2, z2, ..., xN, yN, zN),

(p1, p2, ..., p3N) = (px1 ,Py1 , pz1 , px2 , py2 , pz2 , ..., pxN , pyN , pzN ).

A general point (Q,P) evolves in time to (Q′,P′) according to

q′α = qα + q̇αδt = q′α(qα, q̇α),

p′α = pα + ṗαδt = p′α(pα, ṗα).

So we can say that it is

(Q,P)→ (Q′,P′), Q′ ≡ Q′(Q,P), P′ ≡ P′(Q,P).
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Chapter 2. Classical and quantum microstates

Remark q̇α and ṗα are functions of qα, pα. So the volume at a time t > 0 is equal to the

trajectory times the volume at time t = 0,

dQ′dP′ = JdQdP, J =

∣∣∣∣∣∂(Q′,P′)
∂(Q,P)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
∂q′1
∂q1

. . .
∂q′1
∂p3N

...
. . .

...
∂p′3N
∂q1

. . .
∂p′3N
∂p3N

∣∣∣∣∣∣∣∣∣∣∣ .
So to get a feeling for this formula we first consider a simple one-dimensional case with

1 particle, i.e.

q′ = q + q̇δt, p′ = p + ṗδt.

Now we calculate the Jacobian:

∂q′

∂q
= 1 +

∂q̇
∂q
δt,

∂p′

∂p
= 1 +

∂ṗ
∂p
δt,

∂q′

∂p
=

∂q̇
∂p
δt,

∂p′

∂q
=
∂ṗ
∂q
δt,

⇒ J =

∣∣∣∣∣∣∣
∂q′

∂q
∂q′

∂p
∂p
∂q

∂p
∂p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ 1 +
∂q̇
∂qδt ∂q̇

∂pδt
∂ṗ
∂qδt 1 +

∂ṗ
∂pδt

∣∣∣∣∣∣∣ =

=

(
1 +

∂q̇
∂q
δt

) (
1 +

∂ṗ
∂p
δt

)
−
∂q̇
∂p
δt
∂ṗ
∂q
δt =

= 1 +

(
∂q̇
∂q

+
∂ṗ
∂p

)
δt + O(δt2).

δt2 and higher can be neglected because our taylor expansion was also just to order δt2.

We already know the Hamilton equations,

q̇ =
∂H
∂p

, ṗ = −
∂H
∂q
.

Inserting them we obtain

⇒

(
∂q̇
∂q

+
∂ṗ
∂p

)
=

(
∂2
H

∂p∂q
−
∂2
H

∂q∂p

)
= 0.

Therefore we get that J = 1! The same proof can be done for more particles in more

dimensions, then
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Chapter 2. Classical and quantum microstates

J = 1 +

3N∑
α=1

(
∂q̇α
∂qα

+
∂ṗα
∂pα

)
︸         ︷︷         ︸

=0

δt + O(δt2).

Thus it is proofen. We now go one step further. Since the volume does not change it is

like an incompressable liquid, where the shape changes but the area is preserved. We

are now going to introduce the phase-space density of states %(Q,P),

∫
all phase-space

dQdP%(Q,P) = 1. (2.5)

Consider a volume V in the phase-space (not in the real-space - V is not the box volume!).

Suppose we have n ensemble members (points) total. The number of ensemble points

in volume V is then

nv = n
∫

V
dQdP%(Q,P).

We consider time evolution. The net increase of the number of points inside V is then

given through

−
dnv

dt
= −

d
dt

n
∫

V
dQdP%(Q,P) = −n

∫
V

dQdP
∂%(Q,P)
∂t

.

The net decrease is accompanied by the flow through the surface of the volume,

−
dnv

dt
=

∮
∂V

d~S~j, ~j = n%~v,

where d~S is an infinitesimal surface element, ~v the velocity (6N dimensional vector,

(Q̇, Ṗ)) and n% the number of points (density) at (Q,P). By using Gauss’ theorem we

obtain

−
dnv

dt
= −n

∫
V

dQdP
∂%

∂t
=

∮
∂V

d~S~j =

∫
V

dQdP∇~j = n
∫

V
dQdP∇(%~v).

So we found another continuity equation in form of

∂%

∂t
+ ∇(%~v) = 0. (2.6)
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Chapter 2. Classical and quantum microstates

By using

div(%~v) =

3N∑
α=1

(
∂%q̇α
∂qα

+
∂%ṗα
∂pα

)
=

∑
α

(
∂%

∂qα
q̇α +

∂%

∂pα
ṗα

)
we find Liouville’s equation,

∂%

∂t
+

∑
α

(
∂%

∂qα
q̇α +

∂%

∂pα
ṗα

)
≡

d%
dt

= 0. (2.7)

Conclusions We can directly make two statements:

1. We see that d%
dt = 0, where d%

dt is a full derivative, i.e. the observer moves with the

flow, while ∂%
∂t is the stationary observer case.

2. If ∂%
∂t = 0 then % = %(E) only. So the energy is conserved.

2.5 Microstates in quantum mechanics, the density

matrix/operator

We already know the Schrödinger equation:

i~
∂ψ

∂t
= −
~2

2m
(∇2

1 + . . . + ∇2
N),

where

ψ = ψ(~r1, . . . ,~rN) : wave function

N : Number of particles∣∣∣ψ∣∣∣2 d3~r : probability to find particle(s) in a small neighorhood of volume d3~r arround ~r,

ψ(~r1, . . .~rN) : defines the microsopie state = microstate. (2.8)

Stationary states φn have

Ĥφn = Enφn.

Any wavefunction can be expanded as
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Chapter 2. Classical and quantum microstates

ψ =
∑

n

cnφn.

Normalization requires that

∑
n

|cn|
2 = 1.

The average value of a physical observable A, to which there is a hermitian operator Â,

is given by

〈A〉 =

∫
dQψ∗Âψ =

〈
ψ|Â|ψ

〉
,

where 〈A〉 is the expectation value of A. We continue,

〈A〉 =

∫
dQ

∑
nn′

c∗nc′nφ
∗

nÂφn =
∑
nn′

c∗nc′n

∫
dQφ∗nÂφn︸ ︷︷ ︸

Ann′

=
∑
nn′

c∗nc′nAnn′ .

We now introduce %nn′︸︷︷︸
density matrix

≡ c∗nc′n,

→ 〈A〉 =
∑
nn′
%nn′Ann′ = tr%̂Â.

In operator notation we have %̂ = |ψ〉〈ψ|.

• 〈φn|%̂|φn′〉 =

cn︷ ︸︸ ︷
〈φn|ψ〉 〈ψ|φn′〉︸ ︷︷ ︸

c∗n′

= c∗n′cn = %nn′ .

• Diagonal elements, %nn′ = |cn|
2, are called probabilities. Off-diagonal elements, are

called coherences.

• tr% =
∑

n |cn|
2 = 1

%̂2 = %̂%̂ = |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ| = %̂

%̂ : Complete description of the quantum mechanical state. Up to now, considering

only pure states, it is a redundant description.
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Chapter 2. Classical and quantum microstates

• The motion of mixed states (Schrödinger’s cat). Mixed state: there is a probability

pα, that the system is in state ψα.

• I cannot write a wave function for such a mixed state. Average Value of A is

Ā =
∑
α

statistical average︷︸︸︷
pα 〈A〉α︸︷︷︸

QM average

〈Aα〉 =

∫
dQψ∗αâψa.

Let us rewrite:

Ā =
∑
α

pα〈ψα|Â|ψα〉 =
∑
α

∑
nn′

pαcα∗n c′αn

∫
dQφ∗nÂφn′ =

∑
α

∑
nn′

pαcα∗n c′αn Ann′ =

=
∑
α

∑
nn′

pα%nn′Ann′ = tr(%̂Â)

• %nn′ =
∑
α pαcα∗n c′αn ,

%̂ =
∑
α pα|ψα〉〈ψα|: describes mixed states

• tr(%̂) =
∑
α pα

∑
n |cn|

2 =
∑
α pα = 1,

%̂2 , %! Signature of mixed states!

Summary:

pure states mixed states

%̂ |ψ〉〈ψ|
∑
α pα|ψα〉〈ψα|,

∑
α pα = 1

tr%̂ 1 1

%̂2 = %̂ , %̂

A tr
[
%̂Â

]
tr

[
%̂Â

]
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Chapter 2. Classical and quantum microstates

2.6 Quantum Liouvilles theorem

∂
∂t

=
∑
α

∂
∂t

(
pα|ψα >< ψα|

)
=

∑
α

pα

(
∂|ψα >

∂t
〈ψα| + |ψα〉

∂〈ψα|

∂t

)
=︸︷︷︸

SGL

=
∑
α

pα
( 1
i~

Ĥ|ψα〉〈ψα| −
1
i~
ψα〉〈ψα|Ĥ

)
=

1
i~

(
Ĥ%̂ − %̂Ĥ

)
=

=
1
i~

[
Ĥ, %̂

]
.

The Von Neumann’s equation is

∂%

∂t
=

1
i~

[
Ĥ, %̂

]
.

In QM we learned that the time evolution of an operator Â is

d
dt

Â =
∂Â
∂t

+
1
i~

[
Â, Ĥ

]
.

By using this we obtain

→
d
dt
%̂ =

1
i~

[Ĥ, %̂] +
1
i~

[%̂, Ĥ] = 0,

→
d
dt
%̂ = 0 Quantum Liouvilles theorem.

• For time independent %̂:

∂%

∂t
= 0 → [%̂, Ĥ] = 0.

• %̂: integral of motion, conserved quantity.

Definition 2.6.1 Energy is the only integral of motion left, (quantum chaos)

%̂ ≡ %̂(E).

• It is then natural to take φn as stationary states, Ĥφn = Enφn, and %nn′ = %(En)δnn′ ,

Diagonal in the basis of stationary states,

%(En) = |cn|
2 = pn.
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Chapter 2. Classical and quantum microstates

Is the probaility to find the system in a microstate (state) of energy En. (, the

probability that the system has energy En).

• What happens if there are degenerate states (having the same energy En)?

%nn′ = pn(En)δnn′ =


pn(En) 0 0

0 pn(En) 0

0 0 pn(En)

 .
For degenerate states, the coherences ρn,n′ are also zero. This is called the random

phase assumption or a priori equal probabilities.

• We see that

Ā =
∑

n

pn(En)An =
∑

n

pnAn,

An = 〈φn|Â|φn〉.

The task of statistical physics is to find p(En) or pn.

2.7 Counting quantum states

In analogy with classical physics, define

• Number of states below E,

Γ(E) =
∑

n

Θ(E − En).

• The density of states,

g(E) =
dΓ

dE
=

∑
n

δ(E − En).

• And the number of states in [E,E + dE],

Ω(E) = g(E)dE.

Important example: Single-particle states. Consider one particle in a box of linear

dimension L, with periodic boundary conditions (see QM lecture). We calculate
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Chapter 2. Classical and quantum microstates

Ĥ = −
~2

2m
~∇2,

ψ(~r + L~m) = ψ(~r) with an integer vector ~m.

Therefore we can calculate the spectrum (eigenstates and eigenenergies),

ψ~k =
1
√

V
ei~k~r,

ε~k =
~2~k2

2m
,

~k =
2π
L
~n ~n: integer vector.

Trick: from discrete sums to integrals:

∑
~k

f (~k) =
∑

nx

∑
ny

∑
nz

f (~k) =
∑

nx

∑
ny

∑
nz

f (~k) ∆nx︸︷︷︸
1

∆ny︸︷︷︸
1

∆nz︸︷︷︸
1

=

=
∑

nx

∑
ny

∑
nz

f (~k)
(2π

L

)3

∆kx∆ky∆kz =
(2π

L

)3 ∑
~kx

∑
~ky

∑
~kz

∆~k3,

⇒ −→︸︷︷︸
continuum

(2π
L

)3 ∫
d3~k f (~k).

Back to our example:

Γ(E) =
∑

states
Θ(E − Estates) =

∑
~k

Θ(E − E~k),

−→︸︷︷︸
continuum

(2π
L

)3 ∫
d3~kΘ(E −

~2~k2

2m
) =

(2π
L

)3 ∫
~k≤ 2mE

~2

d3~k =
V

(2π)3

4π
3

(2mE
~2

) 3
2

.

Recall the classical result (N = 1), which was

Γ(E)cl =
V
h3

4π
3

(2mE)
3
2 .
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Chapter 2. Classical and quantum microstates

This becomes the quantum result, if we identify h = ~2π. Classical-quantum corespon-

dence fixes the value of h to be Planck’s constant.
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3 Classical Ensembles

• Classical physics

{Q,P} ≡ microstate

%(Q,P) ≡ probability density∫
dQdP%(Q,P) = 1

A =

∫
dQdPA(Q,P)%(Q,P).

• Quantum physics

n↔ ϕn ≡ microstate

pn ≡ probability to be in n

%̂ ≡ density operator∑
n

pn = 1

A =
∑

n

pnAn = tr
[
%̂Â

]
,

An = 〈n|Â|n〉.

3.1 Microcanonical ensemble

We consider a system which is totally closed. We have only 3 parameters, the total

energy E, the volume V and the number of particles N. These parameters are fixed and

describe a macrostate.
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Chapter 3. Classical Ensembles

We need to find the probability that, given the macrostate (E,V,N), the system is in a

specified microstate. In equilibrium (things do not change with time) we can guess: a

priori equal probabilities,

pmicrostate =
1

nr. of microstates

∣∣∣∣∣
E,V,N

.

1. classical physics

%(Q,P) =
1

h3N

1
g(E)

δ [E −H(Q,P)] .

2. quantum physics

pn =
1

Ω(E)
, if E ≤ En ≤ E + δE

= 0, else.

%̂ =
1

Ω(E)

∑
n,E≤En≤E+δE

|ϕn〉〈ϕn|.

3. entropy We know S = S(E,V,N). From the first chapter we still know

S = −kB

∑
n

pn ln(pn) = kB ln Ω(E).

So we identify

S(E,V,N) = kB ln Ω(E,V,N), (3.1)

with the Boltzmann constant kB = 1.38 · 10−23 J/K. This constant connects statistics

with thermodynamics.

Important remark: As N→∞we see that

S = kB ln Ω = kB ln Γ = kB ln(gδE),

up to negligable constants.
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4. temperature

For this we consider a system which we devide into two parts. This system can

exchange energy. In this system we see that

E = EA + EB,

V = VA + VB,

N = NA + NB,

are fixed and

E′A = EA + ∆E,

E′B = EB − ∆E,

E′A + E′B = EA + EB = E.

In equilibrium the enrgy is distributed (on average) such, that S = SA + SB will

have a maximum

∆S = 0, ∆S =
∂SA

∂EA
∆E −

∂SB

∂EB
∆E = 0.

So we conclude for every division, that

∂SA

∂EA
=
∂SB

∂EB
. (3.2)

It is useful to introduce a name for this derivative, the thermodynamic tempera-

ture T or

1
T

=

(
∂S
∂E

)
V,N
. (3.3)

This is the partial derivative of S with respect to E, keeping V and N fixed.

5. pressure and chemical portential

By doing the same as before we obtain (by changing the volume) the pressure

over the temperature
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P
T

=

(
∂S
∂V

)
E,N
. (3.4)

And if we allow particles N to be exchanged we get the negative chemical potential

over the temperature

−
µ

T
=

(
∂S
∂N

)
E,V
. (3.5)

Summary

macrostate pn thermodynamic potential thermodynamics

E,V,N 1
Ω(E,V,N) S = kB ln Ω 1

T =
(
∂S
∂E

)
V,N

dS = 1
T dE + P

T dV − µ
T dN P

T =
(
∂S
∂V

)
E,N

µ
T = −

(
∂S
∂N

)
E,V

3.2 Microcanonical ideal gas, Gibbs paradox,

indistinguished particles

Thermodynamics of an ideal gas (weakly interacting particles) using microcanonical

ensemble.

• We will use

S = kB ln Γ.

We calculated Γ in chapter 2.2,

Γ(E,V,N) =
VN

h3N

(2πmE)
3N
2

(3N/2)!
.

Therefore we get

S = kB ln Γ = kB

(
N ln V +

3N
2

ln(2πmE) − ln
3N
2

! − 3N ln h
)
.

We can easily see that for the temperature we obtain
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1
T

=

(
∂S
∂E

)
V,N

=
3N
2

1
E

kB.

This leads to the well known equation

E =
3
2

NkBT. (3.6)

We say that kBT is the thermal energy. The equipartitian theorem says that for

every (quadratic) degree of freedom there is, in equilibrium, the energy 1
2kBT for

a particle. This is classical physics. In an ideal gas we have three degrees of

freedom. They are quadratic since

H ∝
p2

x

2m
+

p2
y

2m
+

p2
z

2m
.

• We can also calculate the pressure over the temperature,

P
T

=

(
∂S
∂V

)
E,N

= kBN
1
V

⇒ PV = NkBT.

This is also well known as the equation of state of an ideal gas.

1. Gibbs paradox Striling’s formula (Appendix) is given by

lim
N→∞

ln N! ≈ N ln N −N.

Therefore we see that

ln
(3N

2

)
! ≈

3N
2

ln
3N
2
−

3N
2
.

The entropy then changes to

S ≈ kBN ln

V (4πmE
3Nh2

) 3
2
 +

3
2

kBN.

This is a problem, cause V should be V
N . We will see this by considering 2 gases,

where T1 = T2 and P1 = P2. Therefore we get

E1

N1
=

E2

N2
,

N1

V1
=

N2

V2
.
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Suppose we remove the partition between the two gases and let the gases mix.

We can calculate

∆S = S − (S1 + S2)︸    ︷︷    ︸
mixing entropy

.

As we see we find

∆S = kBN1 ln
V
V1

+ kBN2 ln
V
V2
.

Example: N1 = N2 = N
2 , V1 = V2 = V

2 . So we get

∆S = kBN ln 2 > 0.

This is a paradox, because if we take the same gas left and right we see that ∆S

is still greater than zero. So the entropy increases - that makes it ill defined. The

formula must be wrong since

∆Sexpect = 0.

The solution by Gibbs was to devide the phase-space volume(s) by N!. So we get

Γ(E)→
Γ(E)
N!

=
VN

h3NN!
(2πmE)

3N
2

(3N/2)!
.

Then, we see that the V problem in S is fixed,

S = kBN ln

V
N

(4πmE
3Nh2

) 3
2
 +

5
2

kBN.

Now we get ∆S = 0 for the same gases.

2. Undistinguished particles

In quantum mechanics two particles are indistinguishable in principle.

Example: two particles in three states. We have 3! = 6 possible states of the

system. These are called 6 microstates. If the particles are undistinguished we

have only
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3 =
3!
2!

states, where 1
N! removes the degeneracy due to undistinguished particles.

3. Correct classical phase space measures

Γ(E) =

∫
dQdP
h3NN!

Θ(E −H(Q,P)),

g(E) =
dΓ

dE
,

Ω(E) = g(E)δE.

If there are two types of particles we have to use

1
N!
→

1
N1!

1
N2!

, ...

3.3 Canonical ensemble (T,V,N)

Canonical ensemble in a set of microstates of a system (A) in contact with thermal bath

(B). We say that a thermal bath is a reservoir. The system itself can be very small (even

1 particle). The reservoir is to be very large and is not changing due to the contact with

the system. We exchange energy between the reservoir and the system. We propose

E = EA + EB = const.,

where E is the total system energy. Thus the total system is isolated. A and B can

exchange energy.

• Question What is the probability to find system A in microstate n of energy En?

Answer We will show that

pn =
1
Z

exp(−βEn),

β =
1

kBT
.
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The number of microstates corresponding to a fixed energy EA is

ΩA(EA) ·ΩB(E − EA︸ ︷︷ ︸
=EB

),

with the number of microstates of A of energy EA, ΩA, and the number of mi-

crostates of B of energy EB, ΩB.

• The number of microstates available is

∑
EA

ΩA(EA) ·ΩB(E − EA).

• Question What is the probability to find A with energy EA?

Answer We know that this is given by

p(EA) =
ΩA(EA) ·ΩB(E − EA)∑
EA

ΩA(EA) ·ΩB(E − EA)
.

• Question What is the probability to find A in a microstate n of energy En = EA?

pn = pn(En = EA) =
ΩB(E − EA)∑

EA
ΩA(EA) ·ΩB(E − EA)

.

This probability is given mainly by ΩB(E − EA), the number of microstates of the

reservoir! We know that

ΩB(EB) = exp
( 1
kB

SB(EB)
)
,

with the entropy SB of B. So ΩB(EB) is a steep function of EB. Therefore it is the

best to deal with ln Ω = 1
kB

S, when we do a Taylor expansion.

• In equilibrium, A will have average (most probable) energy EA. We expand

ΩB(E − EA) around EA. We calculate

39



Chapter 3. Classical Ensembles

SB(E − EA) ≈ SB(E − EA) +
∂SB

∂EA

∣∣∣∣∣
EA=EA

(EA − EA) + ...,

≈ SB(E − EA) −
∂SB

∂EB

∣∣∣∣∣
EB=E−EA

(EA − EA) + ... =

= SB(E − EA) −
1
T

(EA − EA) + ...

• Neglecting higher order terms (∂2S/∂E2) means that we assume T = const. So we

calculate

⇒ ΩB(E − EA) ≈ exp
( 1
kB

S(E − EA)
)

exp
( 1
kBT

(EA − EA)
)
,

⇒ pn =
ΩB(E − EA)∑

EA
ΩA(EA) ·ΩB(E − EA)

=

=
ΩB(E − EA) exp

(
EA
kBT

)
exp

(
−

EA
kBT

)
ΩB(E − EA) exp

(
EA
kBT

)∑
EA

ΩA(EA) exp
(
−

EA
kBT

) =

=
exp(−EA/kBT)∑

EA
ΩA(EA) exp(−EA/kBT)

=

∣∣∣∣∣∣∣EA = En,
∑
EA

Ω =
∑

n

·

∣∣∣∣∣∣∣ =

=
exp(−En/kBT)∑
n exp(−En/kBT)

.

Thus we found the Boltzmann probability with the partition function Z,

pn =
1
Z

exp(−βEn), (3.7)

β = 1/kBT,

Z =
∑

n

exp(−βEn).

1. Classical physics

We see that

%(Q,P) =
1
Z

1
N!

1
h3N exp(−βH(Q,P)),

Z =

∫
dQdP
h3NN!

exp(−βH(Q,P)).
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2. Quantum physics

Again we observe that

%nn = pn =
1
Z

exp(−βEn),

Z =
∑

n

exp(−βEn),

%̂ =
1
Z

exp(−βĤ).

3. Maximum uncertainty principle

In chapter 1.4 we found that if we fix the average of an observable A,

A =
∑

n

pnAn,

then the probability that maximum uncertainity is

pn =
1
Z

exp(−λ2An).

Thus the canonical ensemble is such that the uncertainty is maximized and

E =
∑

n

pnEn = const.,

λ2 =
1

kBT
= β.

4. Internal energy E (or just E) and specific heat C

We know that

E =
∑

n

pnEn =
1
Z

∑
n

En exp(−βEn) = −
∂ ln Z
∂β

.

This is called the internal energy. For the specific heat or heat capacity we calculate
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cv =

(
∂E
∂T

)
V

=
∂β

∂T
∂E
∂β

=

=
1

kBT2

(
∂
∂β

1
Z
∂z
∂β

)
=

1
kBT2

− 1
Z2

(
∂Z
∂β

)2

+
1
Z
∂2Z
∂β2

 =

=
1

kBT2

(
E2 − E

2
)
.

Here we must know that

E2 =
∑

n

pnE2
n =

1
Z

∑
n

exp(−βEn)E2
n =

=
1
Z
∂2

∂β2

∑
n

exp(−βEn) =
1
Z
∂2Z
∂β2 ,

cv =
1

kBT2

[
E2 − E

2
]

=
σ2

E

kBT2 .

This forumla is important, since it shows that

a) cv is proportional to the energy fluctuation (σ2
E).

b) cv is greater than 0 !

c) cv is proportional to N due to (∂E/∂T)V. Therefore we calculate

σ2
E ∝ N ⇒ σE ∝

√

N.

The relative error in measuring the energy is thus given by

σE

E
∝

√
N

N
∝

1
√

N
→ 0,

for N→∞.

In the thermodynamic limit, i.e. N→∞, V →∞ and thus N/V = const the average

energy will be

E→ E fixed!

Thus it is very important to see that in the thermodynamic limit the canonical

ensemble is equivalent to the microcanonical ensemble!
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5. Entropy and free energy F

We see that

S = −kB

∑
n

pn ln pn = −kB

∑
n

1
Z

exp(−βEn) ln
[ 1
Z

exp(−βEn)
]

=

= −kB
1
Z

∑
n

exp(−βEn)(− ln Z − βEn) =

= kB
1
Z

ln Z

∑
n

exp(−βEn)

 + kB
β

Z

∑
n

En exp(−βEn) =

= kB ln Z +
1
T

E.

We call

F = −kBT ln Z = E − TS, (3.8)

the (Helmholz) free energy. It is the thermodynamic potential, F ≡ F(T,V,N) for

the canonical ensemble.

6. Thermodynamics

We will now calculate some of the thermodynamic quantities. We see that

(
∂F
∂T

)
V,N

= −kB ln Z − kBT
dβ
T
∂ ln Z
∂β

=
F
T

+
kBT
kBT2 (−E) = −S.

Therefore we have

S = −

(
∂F
∂T

)
V,N
. (3.9)

Similarly we introduce two other thermodynamic quantities. We have the pres-

sure

P = −

(
∂F
∂V

)
T,N
,

and the chemical potential
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µ =

(
∂F
∂N

)
T,V
.

Summary

macrostate pn thermodynamic potential thermodynamics

T,V,N 1
Z exp(−βEn) F ≡ F(T,V,N) S = −

(
∂F
∂T

)
V,N

Z =
∑

n exp(−βEn) F = −kBT ln Z P = −
(
∂F
∂V

)
T,N

dF = −SdT − PdV + µdN µ =
(
∂F
∂N

)
T,V

3.4 Grand canonical ensemble (T,V, µ)

Again our system A can be small, even 1 particle. The heat reservoir B is very very

large and EA + EB = E, NA + NB = N, as well as VA and VB are fixed. The system A can

exchange energy and particles with the reservoir.

• Question What is the probability to find system A in a (one) microstate n corre-

sponding to the energy En and number of particles Nn?

Answer We will show that

pn =
1

ZG
exp(−β(En − µNn)),

ZG =
∑

n

exp(−β(En − µNn)).

ZG is called the grand partition function (sometimes also written as Z). The

number of microstates of the total isolated system A + B corresponding to a fixed

energy EA and a fixed number of particles NA is

ΩA(EA,NA) ·ΩB(E − EA,N −NA),

with the number of microstates of A of energy EA and particles NA, ΩA, and the

number of microstates of B of energy EB and particles NB, ΩB.
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• The number of microstates available is

∑
EA,NA

ΩA(EA,NA) ·ΩB(E − EA,N −NA).

• Question What is the probability to find A with energy EA and particles NA?

Answer We know that this is given by

p(EA,NA) =
ΩA(EA,NA) ·ΩB(E − EA,N −NA)∑

EA,NA
ΩA(EA,NA) ·ΩB(E − EA,N −NA)

.

• Question What is the probability to find A in a (one) microstate n of energy

En = EA and number of particles Nn = NA?

pn = pn(En = EA,Nn = NA) =
ΩB(E − EA,N −NA)∑

EA,NA
ΩA(EA,NA) ·ΩB(E − EA,N −NA)

.

This probability is given mainly by ΩB(E−EA,N−NA), the number of microstates

of the reservoir!

• Assuming that EB � EA, NB � NA we can do the mathematics of large numbers.

• In equilibrium, A will have average (most probable) energy EA and number of

particles NA that corresponds to the maximum of SA + SB = SA+B. Then we can

expand ΩB(E − EA,N −NA) around EA in EA and NA in NA. We calculate

SB(E − EA,N −NA) ≈ SB(E − EA,N −NA) +
∂SB

∂EA

∣∣∣∣∣
EA=EA

(EA − EA) +

+
∂SB

∂NA

∣∣∣∣∣
NA=NA

(NA −NA) + ...,

≈ SB(E − EA,N −NA) −
∂SB

∂EB

∣∣∣∣∣
EB=E−EA

(EA − EA) −

−
∂SB

∂NB

∣∣∣∣∣
NB=N−NA

(NA −NA) + ... =

=

∣∣∣∣∣∣ ∂SB

∂EB

∣∣∣∣∣
EB=E−EA

=
1
T
,

∂SB

∂NB

∣∣∣∣∣
NB=N−NA

= −
µ

T

∣∣∣∣∣∣ =

= SB(E − EA,N −NA) −
1
T

(EA − EA) +
µ

T
(NA −NA) + ...
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• Neglecting higher order terms (∂2S/∂E2) means that we assume T = const, because

B is very very big, so that

∂T
∂EA

,
∂µ

∂NA
≈ 0.

So we calculate

pn =
ΩB(E − EA,N −NA)∑

EA,NA
ΩA(EA,NA) ·ΩB(E − EA,N −NA)

=

=
ΩB(E − EA,N −NA) exp

(
EA
kBT

)
exp

(
−

EA
kBT

)
exp

(
−µ NA

kBT

)
exp

(
µ NA

kBT

)
ΩB(E − EA,N −NA) exp

(
EA−µNA

kBT

)∑
EA,NA

ΩA(EA,NA) exp
(
−

EA−µNA
kBT

) =

=
exp(−β(ENA − µNA))∑

n exp(−β(En − µNn))
.

• We call the Z = exp(βµ) fugacity, which means tendency to escape. Overall we

found

ZN =
∑

n

exp(−βEn(N)), ZG =

∞∑
N=0

ZnZN, (3.10)

Z = exp(βµ).

1. classical physics

We see that

ZG =

∞∑
N=0

ZN
∫

dQdP
h3NN!

exp(−βH(Q,P)),

%(Q,P) =
1

ZG

∞∑
N=0

ZN 1
h3NN!

exp(−βH(Q,P,N)).

2. Quantum physics

Here it is
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pn =
1

ZG
exp(−β(En(Nn) − µNn)),

%̂ =
1

ZG
exp(−β(Ĥ − µN̂)), N̂|n〉 = N|n〉,

ZG = tr
[
exp(−β(Ĥ − µN̂))

]
.

Note: The trace means
∑
∞

N=0
∑

n(N).

3. Information theory point of view The grand canonical ensemble is the one which

maximizes uncertainty given the constraints

E =
∑

n

pnEn, N =
∑

n

pnNn,

where T, µ are the Lagrange multipliers in that case.

4. Particle number fluctuations Let us calculate ∂N/∂µ.

∂N
∂µ

=
∂
∂µ

1
ZG

∑
n

Nn exp(−β(En − µNn)) =

= −
1

Z2
G

∂ZG

∂µ

∑
n

Nn exp(−β(En − µNn))︸                                        ︷︷                                        ︸
=−N

2
β

+
1
Z
β
∑

n

N2
n exp(−β(En − µNn))︸                                ︷︷                                ︸

=N2β

=

=
N2 −N

2

kBT
=
σ2

N

kBT
.

This result is important since

a) This means that ∂N/∂µ > 0!

b) The error in N is σN/N which is proportional to 1/
√

N. This goes to zero

when N goes to infinity. We also see

σ2
N ∝

∂N
∂µ
∝ N.

So the average number of particles N is very well defined (small σN) in the

thermodynamic limit. This can be considered as fixed. Therefore in the

47



Chapter 3. Classical Ensembles

thernodynamic limit with N,V → ∞ and N/V = const. the microcanonical,

canonical and grandcanonical ensembles are equivalent! The reason is that

E→ fixed
(
σE

E
→ 0

)
, N→ fixed

(
σN

N
→ 0

)
.

5. Grand free energy Φ(T,V, µ)

We now introduce another potential,

Φ(T,V, µ) = −kBT ln ZG.

Remark The notation in the literature is Ω,L,Ψ,G,... Let us calculate the entropy,

S = −kB

∑
N

pn ln pn =

= −kB

∑
n

1
ZG

exp(−βEn + βµNn) ln
[ 1
ZG

exp(−βEn + βµNn)
]

=

= −kB
1

ZG
(− ln ZG)

∑
n

exp(−βEn + µβNn) +

+ kB
β

ZG

∑
n

(En − µNn) exp(−ηEn + µβNn) =

= kB ln ZG +
1
T

(E − µN) = −
Φ

T
+

E − µN
T

.

Therefore we see that

Φ = E − ST − µN. (3.11)

In thermodynamics we see that E→ E and N→ N.

6. Thermodynamics We now calculate some relations.
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∂Φ
∂µ

= −kBT
∂
∂µ

ln ZG = −kBT
1

ZG

∂ZG

∂µ
=

= −kBT
1

ZG

∑
n

βNn exp(−β(En − µNn)) = −N,

∂Φ
∂T

= −kB ln ZG − kB
dβ
dT
∂ ln ZG

∂β
=

=
Φ

T
+

1
T

∑
n

−(En − µNn) exp(−β(En − µNn)) =

=
Φ

T
−

1
T

(E − µN) = −S.

We will see later that

∂Φ
∂V

= −P.

Summary

macrostate pn thermodynamic potential thermodynamics

T,V, µ 1
ZG

exp(−β(En − µNn)) Φ ≡ Φ(T,V, µ) S = −
(
∂Φ
∂T

)
V,µ

ZG =
∑

n exp(−β(En − µNn)) Φ = −kBT ln ZG P = −
(
∂Φ
∂V

)
T,µ

dΦ = −SdT − PdV −Ndµ N = −
(
∂Φ
∂µ

)
T,V
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4 Ideal classical, bose and fermi gas

• classical gas

non-interacting classical particles, low occupation probabilities.

• bose gas

non-interacting bosons (integer spin), photons, phonons, integer-spin atoms,

cooper pairs, ... with no restriction on the occupation of states.

• fermi gas

non-interacting fermions (half-integer spin), electrons, protons, neutrons, up to

one particle in 1 state (Pauli exclusion principle).

• In the limit of T→∞ all the gases are equivalent.

4.1 Ideal classical gas

In chapter 3.2 we found that

S(E,V,N) = kBN ln
[

V
N

(4πmE
3Nh2

)3/2]
+

5
2

kBN,

in the microcanonical ensemble.

1. Canonical treatment

• We know that

H(Q,P) =
~P2

2m
=
~p2

1

2m
+ ...

~p2
N

2m
.

We need to calculate
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Z ≡ Z(T,V,N) =

∫
dQdP
h3NN!

exp(−βH(Q,P)).

• We need to calculate the partition function

Z =
1

h3NN!

∫
dQ

∫
d3~p1d3~p2 · · · d3~pN exp(−β~p2

1/2m) · · · exp(−β~p2
N/2m) =

=
VN

h3NN!

[∫
d3~p exp

(
β
~p2

2m

)]N

=
ZN

1

N!
.

• In the factorization we used the one particle partition function which is

Z1 =
V
h3

[∫
∞

−∞

dpx exp(−βp2
x/2m)

∫
∞

−∞

dpy exp(−βp2
y/2m)

∫
∞

−∞

dpz exp(−βp2
z/2m)

]
=

=
V
h3

(√
π2mkBT

)3
=

V(
h

√
2πmkBT

)3 =
V
λ3 ,

λ =

√
h2

2πmkBT
=

√
2π~2

mkBT
.

This thermal-de-Broglie-wavelength is equivalent to the de-Broglie-wavelength

(h/momentum) of a particle of energy ≈ kBT.

• Question Why can Z be factorized into the product of Z1?

Answer Each particle interacts (exchanges energy) independently with the

reservoir. This leads to

Z =
1

N!
VN

h3N (2πmkBT)3N/2 =
1

N!
VN

λ3N .

• The free energy is F = −kBT ln Z. Therefore we calculate

F = −kBT ln
[

1
N!

( V
λ3

)N]
= kBT ln N! − kBTN ln

( V
λ3

)
=

= |ln N! ≈ N ln N −N| = kBTN ln
[N
V
λ3

]
− kBTN =

= kBTN
(
ln

[N
V
λ3

]
− 1

)
∝ N.
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• The entropy is S = −(∂F/∂T)V,N. So we calculate

S = −kBN
(
ln

[N
V
λ3

]
− 1

)
− kBTN

∂
∂T

lnλ3 =

= −kBN ln
(N

V
λ3

)
+

5
2

kBN.

Remark We see that

T
∂
∂T

lnλ3 = T
∂
∂T

3 lnλ = 3T
1
λ

dλ
dT

= −
3
2
.

Therefore we have found the Sackur-Tetrole equation,

S ≡ S(T,V,N) = −kBN ln
[N
V
λ3

]
+

5
2

kBN. (4.1)

• The internal energy E = F + TS,

E =
3
2

kBTN → S = kBN ln

V
N

(
4πmE
3Nh2

)3/2 +
5
2

kBN,

as in the microcanonical treatment (E→ E).

2. Grandcanonical treatment

We calculate

z = exp(βµ),

ZG =

∞∑
N=0

zNZN =

∞∑
N=0

exp(βµN)
1

N!

( V
λ3

)N

=

∞∑
N=0

1
N!

(
exp(βµ)

V
λ3

)N

=

= exp
(
exp(βµ)

V
λ3

)
.

• The grand canonical potential Φ = −kBT ln ZG is

Φ = −kBT
( V
λ3

)
exp(βµ).
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• The average particle number N = −(∂Φ/∂µ)T,V is

N = kBT
( V
λ3

)
β exp(βµ) = −βΦ ⇒ Φ = −kBTN.

• Chemical potential

µ = kBT ln
(

N
V
λ3

)
.

Remark If N � V/λ3 we see that µ→ −∞. This is the case when the distance

between the particles is much greater than λ or when there are much more

boxes than particles.

• The entropy is S = −(∂Φ/∂T)V,µ. We see

S = kB

( V
λ3

)
exp(βµ) + kBTV

(
−

3
λ4

dλ
dT

)
exp(βµ) + kBT

( V
λ3

) dβ
dT
µ exp(βµ) =

= −
Φ

T
−

3
2

Φ

T
+

µ

kBT
Φ

T
= −

5
2

kBN −N
µ

T
=

= −kBN ln
[
N
V
λ3

]
+

5
2

kBN.

This is the same as in the canonical treatment in the thermodynamic limit

(N→ N).

• The internal energy is E = Φ + TS + µN. We see

E = −kBTN − TN
µ

T
+

5
2

kBTN + µN =
3
2

kBTN.

Again in agreement with the equipartition theorem.

4.2 Maxwell-Boltzmann probability distribution

Question What is the probability to find a given one particle in a state of momentum ~p?

Answer We know that
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%1(~p) = (2πmkBT)−3/2 exp
(
−

~p2

2mkBT

)
.

We now want to calculate

%1(~r1, ~p1) =
1

Zh3 exp(−βH(~r1, ~p1)), Z =

∫
d3~r1d3~p1

1
h3 exp(−βH(~r1, ~p1)).

This is the canonical ensemble for one particle! So we see that

%1(~r1, ~p1) = exp
(
−

~p2
1

2mkBT

)
1

h3
∫

d3~r1
h3

∫
d3~p1 exp

(
−

~p2
1

2mkBT

) =

=
1
V

exp(−~p2
1/2mkBT)

(2πmkBT)3/2 ,

⇒ %1(~p1) =

∫
d3~r1%1(~p1,~r1) = V%1(~r1, ~p1),

⇒ %1(~p − 1) = (2πmkBT)−3/2 exp
(
−~p2

2mkBT

)
.

Question Suppose the particle is in an external potential U(~r). What is %1(~p)?

Answer It is the same because we also devide through the potential term. Thus we do

not have any space dependence! This is very important.

The velocity distribution

%1(~p)d3p = %1(~p)4πp2dp ≡ %1(p = |~p|)dp,

⇒ %1(p) = 4πp2(2mkBT)−3/2 exp(−p2/2mkBT),

%1(p)dp = %1(v)dv = %1(v)
1
m

dp,

⇒ %1(v) = 4π(vm)2m(2πmkBT)−3/2 exp
(
−

mv2

2kBT

)
.

So we found the Maxwell distribution

%1(v) = 4πv2
( m
2πkBT

)3/2

exp
(
−

mv2

2kBT

)
. (4.2)

We see that we get
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vmax =

√
2kBT

m
, v =

√
8kBT
πm

.

The distribution is shown in figure (4.1).

Figure 4.1: Plot of the Maxwell distribution with kB = m = 1 at T = 300.

4.3 Ideal bose and fermi gases; occupation numbers

Consider N identical (nondistinguishable) particles. The system is described by a

wavefunction

ψ = ψ(~r1, ...,~rN).

• bosons The wavefunction is symmetric with respect to the exchange (swap) of

particles

ψ(~r1,~r2, ...,~rN) = ψ(~r2,~r1, ...,~rN) = ψ(~rp1 , ...,~rpN ),

with pi the permuations of particle i, e.g.

(1, 2, 3) P
→ (2, 3, 1) = (p1, p2, p3)⇒ σ(P) = +1.

Here σ(P) is the sign of the permutation P, defined
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σ(P) = (−1)number of permutations.

• If σ(P) = +1 we have an even number of permutations, while with σ(P) = −1 we

have an odd number of permutations.

• fermions The wavefunction is antisymmetric with respect to the exchange of two

fermions,

ψ(~r1, ...,~rN) = −ψ(~r2,~r1, ...,~rN) = σ(P)ψ(~rp1 , ...,~rpN ).

• algorithm

– Write down the Hamiltonian for N particles,

Ĥ = −
~2

2m
(∇2

1 + ... + ∇2
N)︸                  ︷︷                  ︸

kinetic

+ u(~r1, ...,~rN)︸      ︷︷      ︸
potential

.

– Solve to get eigenstates ψN and energies En,

Ĥψn = Enψn.

– Symmetrize (antisymmetrize) to get bosonic (fermionic) states.

ψn,bosons = cb

∑
P

ψn(~rp1 , ...,~rpN ),

ψn,fermions = c f

∑
P

σ(P)ψn(~rp1 , ...,~rpN ).

The bosonic and fermionic states n have energy En. It can happen that

ψn,fermions = 0. Then the corresponding state n does not exist and En is absent

in the spectrum.

• Now consider ideal bose and fermi gases, in which the particles do not interact,

u = 0,

Ĥ = −
~2

2m
(∇2

1 + ... + ∇2
N).

56



Chapter 4. Ideal classical, bose and fermi gas

Let ψk(~r) be the single-particle wave function,

−
~2

2m
∇

2ψk(~r) = Ekψk(~r),

obtained by solving the single-particle hamiltonian. The single-particle energy is

εk. The quantum numbers of the single particle states are k. A generic N-particle

wavefunction (eigenstate of H) can be written as

ψ(~r1, ...,~rN) =
∏

i

ψki(~ri).

The corresponding energy is

E =
∑

i

εki .

The boson wavefunction is

ψboson(~r1,~r2, ...,~rN) = cb

∑
P

N∏
i=1

ψki(~rpi).

The fermion wavefunction is

ψfermion(~r1,~r2, ...,~rN) = c f

∑
P

σ(P)
N∏

i=1

ψki(~rpi).

Therefore we can rewrite this with the help of the so called Slater-Determinate,

ψfermion(~r1,~r2, ...,~rN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣
ψk1(~r1) . . . ψk1(~rN)
...

. . .
...

ψkN (~r1) . . . ψkN (~rN)

∣∣∣∣∣∣∣∣∣∣ .
Example The Pauli-exclusion principle follows directly from this. Consider a

single-particle state k and two particles.

ψk,boson = ψk(~r1)ψk(~r2), E = 2εk,

ψk,fermion =
1
√

2!

(
ψk(r1)ψk(r2) − ψk(r2)ψk(r1)

)
= 0.
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The state in which two fermions (or more) occupy a single state, does not exist.

This is the Pauli-exclusion principle.

Remark The distinction between bosons and fermions is important as long as the

single-particle wavefunction overlap. For non-interacting particles, the state is

uniquely given by the set of occupation numbers nk (number of particles occupy-

ing the single particle state k),

E =
∑

k

nkεk.

We have the constraint N =
∑

k nk.

• Grand canonical ensemble treatment. We have

bosons nk = 0, 1, 2, ...,N, fermions nk = 0, 1.

The grand partition function is then

ZG =

∞∑
N=0

∑
states

exp(−βEstate(N) + βµN).

With Estate(N) =
∑

k nkεk we can rewrite this to

ZG =

∞∑
N=0

∑
{nk},

∑
k nk=N

exp

−β∑
k

nkεk + βµ
∑

k

nk

 .
Therefore we find that

58



Chapter 4. Ideal classical, bose and fermi gas

ZG =

∞∑
N=0

∑
{nk},

∑
k nk=N

exp

−β∑
k

(εk − µ)nk

 =

=

∞∑
N=0

∑
{nk}

exp

−β∑
k

(εk − µ)nk

 δ∑k nk,N =

=
∑
{nk}

exp(−β
∑

k

(εk − µ)nk)
∞∑

N=0

δ∑k nk,N︸      ︷︷      ︸
=1

=

=
∑

n1

exp(−β(ε1 − µ)n1)
∑

n2

exp(−β(ε2 − µ)n2) · · · =
∏

k

Zk,

Zk =
∑

nk

exp(−β(εk − µ)nk).

We call Zk the single-state k grand canonical function.

• Bose-Einstein-statistics Since we have nk = 0, 1, 2, ...∞, we can see by using the

geometric series for µ < εk that we have

Zk =

∞∑
nk=0

exp(−β(εk − µ)nk) =
1

1 − exp(−β(εk − µ))
.

So we obtain

ZG =
∏

k

Zk =
∏

k

1
1 − exp(−β(εk − µ))

.

The grand free energy is

Φ = −kBT ln ZG = kBT
∑

k

ln(1 − exp(−β(εk − µ))).

The average number of particles is

N = −

(
∂Φ
∂µ

)
T,V

=
∑

k

1
exp(β(εk − µ)) − 1

=
∑

k

nk.

Therefore we got the Bose-Einstein statistics
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nk =
1

exp(β(εk − µ)) − 1
≡ n(εk). (4.3)

The average occupation of single-particle state k.

• Fermi-Dirac-statistics Here we have nk = 0, 1 which gives us

Zk = 1 + exp(−β(εk − µ)).

So the grand canonical function is

ZG =
∏

k

Zk =
∏

k

(1 + exp(−β(εk − µ))).

The grand free energy is

Φ = −kBT ln ZG = −kBT
∑

k

ln(1 + exp(−β(εk − µ))).

The average number of particles is

N = −

(
∂Φ
∂µ

)
T,V

=
∑

k

1
exp(β(εk − µ)) + 1

=
∑

k

nk.

Therefore we got the Fermi-Dirac statistics

nk =
1

exp(β(εk − µ)) + 1
≡ f (εk). (4.4)

The average number of fermions in a single-particle state k is described by this.

4.4 Quantum gases at high temperatures - the classical

limit

From the last section we know that

nk =
1

exp(β(εk − µ)) ∓ 1
,
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Figure 4.2: Comparison of fermions and bosons at low and high temperatures

with − for bosons and + for fermions. This results in figure 4.2.

We get nk � 1 if exp(β(εk − µ))� 1. In this limit we have

nk ≈ exp(−β(εk − µ)). (4.5)

This is called the Maxwell-Boltzmann statistics. This is used to describe classical gases.

For the average particle number we get

N =
∑

k

nk = exp(βµ)
∑

k

exp(−βεk) = exp(βµ)Z1 ⇒ exp(βµ) =
N
Z1
.

Overall we found that

nk = N
1

Z1
exp(−βεk).

Thus the probability that a single-particle energy level εk is occupied is given by

pk =
nk

N
=

1
Z1

exp(−βεk). (4.6)

Remark Compare this with

pn =
1
Z

exp(−βEn).

The difference is that the one above is always valid and refers to the probability to find

the (whole) system in many particle state of energy En while the one we found only

describes one particle states and is only valid in the classical limit.

Question At which physical conditions is the classical limit realized? What is ’∞’ in

T→∞?
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Answer For nk � 1 ∀εk we get that

µ

kBT
= βµ→ −∞.

In chapter 4.2 we found for a classical gas

µ = kBT ln
(

N
V
λ3

)
.

We see that µ/kBT→ −∞ if λ3N/V � 1. Therefore we see that

(
V

N

)1/3

� λ.

This can be interpreted when we see that V/N is the volume available for one particle.

The classical limit is reduced when the distance between particles is much greater than

the thermal de-Broglie wavelength λ. We should note that λ = λ(T) ∝ 1/
√

T.

The summary is shown in a graph, figure 4.3.

Figure 4.3: Comparison of the most important statistics

4.5 Ideal quantum gases and the maaximum

uncertainty principle

Consider levels i of energy εi, each gi degenerate. Let ni be the occupation number of

(all degenerate) levels of energy εi. We will now investigate using
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N =
∑
εi

ni, E =
∑
εi

εini.

1. Bosons

Question In how many ways can we distribute ni Bosons in gi states?

We see that we have n Bosons and g − 1 seperating walls. Thus we have total

n + g − 1 circles. This results in

Ωi =

 ni + gi − 1

ni

 .
This is the number of ways to distribute ni Bosons in gi states. For all energy

levels we have

Ω =
∏
εi

Ωi =
∏
εi

 ni + gi − 1

ni

 .
2. Fermions

Here we have

Ωi =

 gi

ni

 .
Therefore we find for all energy levels

Ω =
∏
εi

 gi

ni

 .
3. Maxwell-Boltzmann particles

Classical, indistinguished particles. There is no correlation between particle oc-

cupation.

• Distinguished particles,

Ωi = gni
i .
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• Undistinguished particles,

Ωi =
gni

i

ni!
⇒ Ω =

∏
εi

gni
i

ni!
.

4. Maximum uncertainty principle

We will now do the basic calculation for the Bose-Einstein statistics. The calcula-

tion for the Fermi-Dirac and Maxwell-Boltzmann statistics is nearly the same.

Question What is ni if the entropy should be a maximum, given the two constraints

E =
∑
εi

εini, N =
∑
εi

ni?

Answer We can do the calculation with the method of Lagrange-multipliers and

S = k ln Ω.

A variation of this results in

δ

S − λ1

∑
εi

ni − λ2

∑
εi

εini

 = 0.

By using δgi = 0 (gi is a constant) and Stirling’s approximation we calculate

S = k ln Ω = k ln
∏
εi

ln

 ni + gi − 1

ni

 = k
∑
εi

ln

 ni + gi − 1

ni

 =

= k
∑
εi

[
ln(ni + gi − 1)! − ln ni! − ln(gi − 1)!

]
,

δS
k

=
∑
εi

(
δ ln(ni + gi − 1)! − δ ln ni!

)
=

=
∑
εi

(
δ((ni + gi) ln(ni + gi) − ln(ni + gi)) − δ(ni ln(ni) − ni)

)
=

=
∑
εi

(
δni ln(ni + gi) + (ni + gi)

ni + gi

δ
ni − δni

)
−

(
δni ln ni + ni

1
ni
δni − δni

)
=

=
∑
εi

δni
(
ln(ni + gi) − ln ni

)
=

∑
εi

δni ln
(ni + gi

ni

)
.
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The extremum problem

0 !
= δS − λ1

∑
εi

δni − λ2

∑
εi

εiδni =

= k
∑
εi

δni

(
ln

(ni + gi

ni

)
−
λ1

k
−
λ2

k
εi

)
,

can then be solved with the knowledge of

λ2/k = β, λ1/k = −βµ.

Overall we get

ni = gi
1

exp(εiλ2/k + λ1/k) − 1
= gi

1
exp(β(ε − µ)) − 1

.

To get the occupation of one of the states gi divide by gi. Therefore we found the

Bose-Einstein statistics,

nstate of energy εi =
1

exp(β(εi − µ)) − 1
.

4.6 Blackbody radiation

We already know that photons have a wave vector ~k and a polarization λ. We also

know that there are two independent polarization states. The photon energy is given

by

~ω = ~ωk = ~kc,

with the speed of light c.

• Photons are bosons (with spin 1), so they obay the Bose-Einstein statistics.

• The chemical potential of photons is zero (µγ = 0). The reason for this is the

creation and annihilation of photons. Their number is not fixed. The average

number of photons is determined by T,V. Then we see that
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F ≡ F(T,V) ⇒ µ =

(
∂F
∂N

)
= 0.

Another (alternative) explenation will be given in the recitation class.

• Photon-statistics:

nk =
∑
λ

1
exp(β~ωk) − 1

=
2

exp(β~ωk) − 1
.

Question How many photons there are at given frequency ω?

Answer The photon spectral density is

n(ω) =
∑

k

nkδ(ω − ck) =
V

(2π)3

∫
d3k

2
exp(β~ωk) − 1

δ(ω − ck) =

=
2V

(2π)3 4π
∫

dkk2 1
exp(β~ωk) − 1

1
c
δ
(
ω
c
− k

)
=

=
V
π2c3

ω2

exp(β~ω) − 1
.

So we get the number of photons of frequencies in [ω,ω+ dω] in a box of volume

V,

n(ω)dω =
V
π2c3

ω2

exp(β~ω) − 1
dω.

• Historically important is the spectral energy density, u(ω) per unit volume, de-

fined as

Vu(ω)dω = ~ωn(ω)dω.

This is the equation known as Planck’s law,

u(ω) =
1
π2c3

~ω3

exp(~ω/kBT) − 1
. (4.7)

Therefore the shape of u(ω) depends only on T! This is a way to measure T very

precise. The general shape is shown in figure 4.4.

66



Chapter 4. Ideal classical, bose and fermi gas

Figure 4.4: Planck’s law for c = ~ = 1 with ω in units for kBT

• A black body absorbs all radiation and emits according to Planck’s law.

• The number of photons is calculated by

N =

∫
∞

0
n(ω)dω =

V
π2c3

∫
∞

0

ω2

exp(β~ω) − 1
dω =

=

∣∣∣∣∣∣∣ x = β~ω

dx = β~dω

∣∣∣∣∣∣∣ =
V
π2c3

1
(β~)3

∫
∞

0

x2dx
exp(x) − 1︸             ︷︷             ︸
≈2.404

=

= 2.404
V
π2

(
kBT
c~

)3

∝ T3.

• Total radiated energy is then

E =

∫
∞

0
Vu(ω)dω =

V
π2c3~

∫
∞

0

ω3

exp(β~ω) − 1
dω = |x = β~ω| =

=
V~
π2c3

1
(β~)4

∫
∞

0
dx

x3

exp(x) − 1︸                ︷︷                ︸
=π4/14

=
V~
π2c3

(kBT)4

~4

π4

15
=

=
4
c
σVT4

∝ T4,

σ =
c
4

1
~3

1
π2c3 k4

B
π4

15
=

1
60
π2k4

B

~3c2 .

We call σ the Stefan-Boltzmann constant.
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4.7 Bose-Einstein condensation (BEC)

Consider bosons of mass m (real atoms) of energy εk = ~2k2/2m. The number of bosons

is given by

N =
∑

k

1
exp(β(εk − µ)) − 1

.

Remark We can calculate

∑
k

f (εk)→
V

(2π)3

∫
d3k f (εk) =

V
(2π)3

∫
dε

∫
d3kδ(ε − εk).

So we see that this is

∫
dεg(ε) f (ε), g(ε) =

V
(2π)3

∫
d3kδ(ε − εk) =

Vm3/2

√
2π2~3

√
ε.

Then we get

N =
∑

k

nk =

∫
∞

0
dεn(ε)g(ε) =

Vm3/2

√
2π2~3

∫
∞

0
dε

√
ε

exp(β(ε − µ)) − 1
.

We get µ < 0 because µ has to be smaller than the smallest ε, which is ε = 0.

• The maximum number of bosons corresponds to µ = 0. We calculate

Ncont
max =

Vm3/2

√
2π2~3

∫
∞

0
dε

√
ε

exp(βε) − 1
= |βε = x| =

= V
( √

2πmkBT
h

)3
2
√
π

∫
∞

0

√
x

exp(x) − 1
dx =

=
( V
λ3

) 2
√
π

∫
∞

0

√
x

exp(x) − 1︸             ︷︷             ︸
=ζ(3/2)Γ(3/2)

≈ 2.612
( V
λ3

)
.

Here we have a problem by using the integral instead of the sum. We forget about

the first (ground) state. We get g(0) = 0 - but we know that there is 1 state. We

can fix this problem by using
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N = Nε=0 + Ncont.

So this one is fixed at T, µ. Nε=0 is the number of bosons at the lowest energy state,

k = 0 and ε = 0. We see that

Ncont
max

V
=

2.612 particles
thermal de-Broglie value

.

The temperature at which the lowest state is populated is called TC, critical tem-

perature. We see that

Ncont
max(TC) = N,

⇒ 2.612 ·
( V
λ3

)
= N ⇒ kBTC =

~2

2πm

( N
2.612V

)2/3

.

At T = TC we speak of the BEC.

Question What is the number of atoms in ε = 0 level?

Answer We see that

Ncont
max

V
=

Nε>0

V
=

N
V

( T
TC

)3/2

.

Therefore we can calculate that

Nε=0

V
=

N
V

(
1 −

( T
TC

)3/2)
.

The relative number of particles is illustrated in figure 4.5.

4.8 Vibrations in solids (phonon gas)

1. Einstein’s model

Atoms are connected to a spring of frequencyω. The energy of the spring is given

by
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Figure 4.5: The relative number of particles for Nε=0 (blue) and Nε>0 (red)

ε = ~ω
(
n +

1
2

)
.

The average energy for one such oscillator is

ε = ~ω
(
n +

1
2

)
, n =

1
exp(β~ω) − 1

,

given by the Bose-Einstein statistics for quantized vibrations. Atomic vibrations

are bosons with µ = 0.

• There are N atoms. There are then 3N independent oscillators. The internal

energy of Einstein’s solid is

E = 3N~ω
[

1
exp(β~ω) − 1

+
1
2

]
.

• The heat capacity is

cV =

(
∂E
∂T

)
V

=
∂β

∂T
∂E
∂β

= 3N
(
~ω
kBT

)2 exp(β~ω)
(exp(β~ω) − 1)2 kB.

• For large T with kBT � ~ω we get that

cV = 3NkB = 6
1
2

kBN.
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Therefore 6N times equipartition theorem value. So 6 quadratic degrees of

freedom. This is the classical result.

• For low T with kBT � ~ω we get that

cV = 3NkB

(
~ω
kBT

)2

exp(−β~ω)→T→0 0.

Figure 4.6: Einstein’s model (red) in comparison to experiment to a.u. (blue)

Remark If there are conduction electrons present in a solid at a very low T,

we have cV ∝ T. For insulators we have cV ∝ T3 for low T.

2. Debye model

The atoms are connected by springs. The dynamics decomposes to that of 3N

normal modes (phonons), plane waves. These are characterized by momentum~k

and polarization λ. There are 3 polarizations: 2 transversal and 1 longitudinal.

• The spectrum is given by

ωkλ = vλk ⇒

 ωkt = vtk

ωkl = vlk
.

Typically we have vl > vt with v ≈ 103
− 04 m/s.

• The density of states is

71



Chapter 4. Ideal classical, bose and fermi gas

g(ω) =
∑
k,λ

δ(ω − ωkλ) =
V

(2π)3

∑
λ

∫
d3~kδ(ω − vλk) =

=
V

(2π)3

∑
λ

4π
∫
∞

0
dkk2 1

vλ
δ
(
ω
vλ
− k

)
=

=
V

2π2

∑
λ

ω2

v3
λ

=
Vω2

2π2

(
1
v3

t

+
1
v3

t

+
1
v3

l

)
︸            ︷︷            ︸

≡3/v3
s

=
Vω2

2π2

3
v3

s
.

So we found that

g(ω) ∝ ω2. (4.8)

• The total number of phonons is given by

3N =

∫ ωD

0
dωg(ω) =

V
2π2

3
v3

s

∫ ωD

0
ω2dω, ωD =

(
6π2 N

V
v3

s

)1/3

,

with the Debye frequency ωD, which is the maximum allowed frequency.

• The internal energy is

E =

∫ ωD

0
dω

ω3

exp(β~ω) − 1
=

∣∣∣∣∣∣∣ β~ω = x

dω = dx
β~

∣∣∣∣∣∣∣ =

=
V

2π2

3~
v3

s

(
1
β~

)4 ∫ β~ωD

0
dx

x3

exp(x) − 1
=

=

∣∣∣∣∣v3
s =

V
3N

1
2π2ω

3
D

∣∣∣∣∣ = 9NkBT
(

kBT
~ωD

)3 ∫ ~ωD
kBT

0
dx

x3

exp(x) − 1
=

=

∣∣∣∣∣TD =
~ωD

kB

∣∣∣∣∣ = 9NkBT
( T
TD

)3 ∫ TD/T

0
dx

x3

exp(x) − 1
.

We call TD the Debye temperature.

• For high temperatures T � TD we get

∫ TD/T�1

0
dx

x3

exp(x) − 1
≈

∫ TD/T

0
dx

x3

x
=

1
3

(TD

T

)3

.

Therefore we calculate that E ≈ 3NkBT and thus cV ≈ 3NkB.
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• For low temperatures T � TD we calculate

∫ TD/T�1

0
dx

x3

exp(x) − 1
≈

∫
∞

0
dx

x3

exp(x) − 1
=
π4

15
.

Therefore we calculate that

E(T � TD) ≈ 3NkBT
( T
TD

)3 π4

5
∝ T4,

cV(T � TD) ≈
12π4

5
NkB

( T
TD

)3

∝ T3.

This is in agreement with the experiment.

4.9 Equipartition theorem, virial theorem,

thermodynamics of diatomic gases

1. Equipartition theorem

Let qi be generalized coordinates and pi be generalized momenta. Thermal aver-

ages (classical physics only)

qi
∂H
∂qi

= pi
∂H
∂pi

= kBT.

Proof on the web of the lecture.

2. Virial theorem

This follows directly from the equipartition theorem,

q̇i = −
∂H
∂qi

⇒

3N∑
i=1

qiṗi = −3NkBT.

3. Thermodynamics of ideal diatomic gases (H2,HCl,N2) at high temperatures

This is an application of the equipartition theorem. We calculate
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H =

3N∑
i=1

aip2
i +

3N∑
i=1

biq2
i .

Therefore we see that

3N∑
i=1

pi
∂H
∂pi

+ qi
∂H
∂qi

= 2
3N∑
i=1

aip2
i + 2

3N∑
i=1

biq2
i = 2H.

So overall we have

2H = 3NkBT + 3NkBT ⇒ H = (3N + 3N) ·
1
2

kBT.

For the heat capacity we derive

cV = (3N + 3N) ·
1
2

kB.

Per quadratic degree of freedom the heat capacity is 1
2kB.

a) Translation: 3,

cv,trans

N
= 3 ·

1
2

kB.

b) Rotation: 2,

cv,rot

N
= 2 ·

1
2

kB.

The energy of the rotation is given by

ε =
~2

2I
l(l + 1), H =

1
2I
~L2,

with the moment of inertia I and the orbital momentum quantum number l.

Only two rotation freedoms, because in the 3rd one, I is very small. Therefore

~2/2I � the disocciation energy. Effectivly two rotational degrees of freedom.

c) Vibrations: 2 (momentum and position),

cv,vib

N
= 2 ·

1
2

kB.
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The energy of the vibrations are given by

ε = ~ω
(
n +

1
2

)
.

At very very large T we have

cV

N
= (3 + 3 + 2) ·

1
2

kB =
7
2

kB.

Typically vibrations are excited only at very large T, so usually we observe only

translation and rotation,

cV

N
=

5
2

kB. (4.9)

Figure 4.7: The addition of degrees of freedom with increasing temperatures

4.10 Degenerate Fermi Gas

Electrons in metals, white dwarfs, 3He, .... We know that εF is the largest occupied

level at zero temperature and is called Fermi energy. We thus can define TF, the Fermi

temperature through
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kBTF = εF. (4.10)

We can analyse three special limits.

1. For T = 0 we get

f (ε) = Θ(µ − ε).

2. For T � TF with T > 0 we get

f (ε) =
1

exp(β(ε − µ)) + 1
.

3. For T � TF we see that µ→ −∞which leads to

f (ε) ≈ exp(−β(ε − µ))� 1, β(ε − µ)� 1.

We can see the plots to these limits in figure 4.7. The case of T � TF is the case of

degenerate Fermi gas.

Figure 4.8: T = 0 (blue) vs. T � TF (red) vs. T � TF (gold) with β = 1

Example Electrons in metal have EF ≈ 10 eV. Therefore we calculate that

TF = EF/kB = 105 K.
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So electrons in metals are degenerate fermions. In this section wie deal with degenerate

electron gases.

1. The density of states g(ε)

We have ε = ~2k2/2m with a spin degeneracy of g = 2. We know that

g(ε) = 2
V

(2π)3

∫
d3kδ(ε − εk) = 2

Vm3/2

√
2π2~3

√
ε ∝
√
ε.

2. The chemical potential

First we calculate the number of particles with a factor 2 due to the spin degener-

acy,

N = 2
∑

k

nk = 2
V

(2π)3

∫
d3k f (εk) =

∫
∞

0
dεg(ε) f (ε).

This equation defines our µ! So we just have to calculate it - which gives us

N = 2
Vm3/2

√
2π2~3

∫
∞

0
dε
√
ε

1
exp(β(ε − µ)) + 1

= 2
Vm3/2

√
2π2~3

I(µ).

So we can determine the chemical potential using

I(µ) =

∫
∞

0
dε
√
ε

1
exp(β(ε − µ)) + 1

,

and Sommerfeld’s expansion (see appendix). We get

I(µ) ≈
2
3
µ3/2 +

π2

6
(kBT)2 1

2
1
√
µ

+ ....

By inserting this into the number of particles equation we get

N = 2
Vm3/2

√
2π2~3

[
2
3
µ3/2 +

π2

12
(kBT)2 1

√
µ

+ ...

]
. (4.11)

For the special case T = 0 we get

N = 2
Vm3/2

√
2π2~3

2
3

( µ(0)︸︷︷︸
=εF

)3/2 = 2
Vm3/2

√
2π2~3

2
3
ε3/2

F . (4.12)
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By dividing equation 4.11 through equation 4.12 we obtain

1 =
( µ
εF

)3/2

+
π2

8

(
kBT
εF

)2 1
(µ/EF)1/2 + ...

We can solve this for µ = µ(T) by iteration. The lowest order os µ ≈ εF. This

solution is inserted into the second term on the right. So we get

1 =
( µ
εF

)3/2

+
π2

8

(
kBT
εF

)2

+ ... ⇒

( µ
εF

)3/2

= 1 −
π2

8

(
kBT
εF

)2

.

By using (1 + x)n
≈ 1 + nx for small x we get that

µ ≈ εF

1 −
π2

8

(
kBT
εF

)22/3

≈ εF

1 −
π2

12

(
kBT
εF

)2 < εF.

Two other important identites are

Γ(ε) =
V

2(π)3

4
3
π

(2mE
~2

)3/2

,

g(ε) =
dΓ

dε
=

V
(2π)3

4
3
π

(2m
~2

)3/2 √
ε.

3. Internal energy E

We see that

E =

∫
∞

0
dεεg(ε) f (ε) ≈

3
5

( µ
εF

)3/2

Nµ

1 +
5π2

8

(
kBT
µ

)2

+ ...

 .
By substituting µ = µ(T) from the last subsection we get

E =
3
5

NεF

1 +
5π2

12

(
kBT
εF

)2

+ ...

 .
At T = 0 we see that ET=0 = 3

5NεF.

4. Heat capacity

We calculate
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cV =

(
dE
dT

)
V

=
3
5

NεF
5π2

12
2k2

BT

ε2
F

=
π2

2
NkB

(
kBT
εF

)
.

Therefore we found that

cV ∝ T. (4.13)

This is important since phonons are ∝ T3 for instance.

1st Remark The Fermi momentum ~kF

We can calculate the radius of the Fermi sphere in momentum space and obtain

kF =
(
3π2 N

V

)1/3

, εF =
~2k2

F

2m
,

where ~kF is the highest momentum of an electron at T = 0. We found that

εF = µ(T = 0) =

(N
V

1
2

√
2π2~3

m3/2

3
2

)1/3
2

.

Typically kF ∼ 1/Å. Therefore λF ∼ Å.

2nd Remark Physics behind cV ∝ T

Many energy levels. With T � TF we have all levels occupied till εF. Since kBT is

the thermal energy per particle and the Pauli-exclusion principle does not allow

lower electrons to go up with their energy because the upper states are occupied,

only electrons of energies kBT below εF can be thermally excited. So

Nexcited electrons ∝ T.

The energy of the excited electrons is kBT/electron. Thus the total change in

energy (compared to T = 0) is

∆E ∝ T · T = T2,

because the number of electrons is also proportional to T. So overall we found

that
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cV =
d∆E
dT
∝ T.
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5 Non-ideal gas

5.1 Virial expansion

We consider a non-ideal, which is an interacting gas.

• Assume pairwise interaction,

ui j(~r) = u(|~ri − ~r j|),

with the distance between i and j being |~ri − ~r j|.

Figure 5.1: Typical potential with a strong repulsion at the beginning and weak

attraction in r0

We consider weakly interacting systems, dilute gases (low density), so that u(typical

distance) is much smaller than kBT.

• Note At room temperature kBT = 25 meV. The total potential energy is

81



Chapter 5. Non-ideal gas

U =
∑
i< j

ui j.

The total energy is then

H =
p2

2m
+ U, p2 = ~p2

1 + ~p2
2 + ... + ~p2

N.

Task Calculate (as well as possible) Z. We see that

Z =

∫
dQdP
h3NN!

exp(−βH) =

∫
dQdP
h3NN!

exp(−βp2/2m) exp(−βu) =

= VN
∫

dP
h3NN!

exp(−βp2/2m)︸                              ︷︷                              ︸
≡Zid

∫
dQ
VN exp(−βu) = Zid

∫
dQ
VN exp(−βu),

Zid =
1

N!

( V
λ3

)N

.

• We need to calculate the exponential function,

exp(−βU) = exp(−β
∑
i< j

ui j) =
∏
i< j

exp(−βui j) =

=
∏
i< j

(1 + exp(−βui j) − 1︸           ︷︷           ︸
≡ fi j�1

) =
∏
i< j

(1 + fi j).

We call fi j the Mayer f -function.

• We expand

exp(−βu) = (1 + f12)(1 + f13) · · · (1 + fN−1,N) = 1 +
∑
i< j

fi j +
∑
i< j

∑
k<l

fi j fkl + ...,

and continue evalulating

Z = Zid · Z = Z(0) + Z(1) + Z(2) + ... .
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• We see directly that Z(0) = Zid. For the first order term we obtain that

Z(1) = Zid

∫
dQ
VN

∑
i< j

fi j = Zid
1

VN

N(N − 1)
2

∫
d3~r1d3~r2 · · · d3~rN f (|~r1 − ~r2|) =

= |N � 1| = Zid
1

V2

N2

2

∫
d3~r1d3~r2 f (|~r1 − ~r2|) =

=
∣∣∣~r = ~r1 − ~r2

∣∣∣ = Zid
1

V2

N2

2

∫
d3~r1

∫
d3~r f (r) =

= Zid
1
V

N2

2
4π

∫
drr2 f (r).

• If we neglect higher-order terms ( f 2, f 3, ...) we get

Z ≈ Z(0) + Z(1) = Zid + Zid
N
V

2πN
∫

drr2 f (r),

or

Z
Zid
≈ 1 −NnB2, B2 = −2π

∫
drr2 f (r),

with n = N/V and the second virial coefficiant B2. We call Z = Z(0) + Z(1) + ... the

virial expansion.

1. Cluster expansion

Remark We see that Z/Zid is 1 − NnB2. We expected something to be to the

power of N - not linear in N. This is a problem, because we want something

to be F ∝ ln Z ∝ N.

Let us go back:

∫
dQ
VN

∑
i< j

fi j =
1
2

N(N − 1)
V2

∫
d3~r1d3~r2 f12.

Denote this as symbol �. The diagrammatic rules to calculate Z/Zid are

– Number the dots from 1 to n, �2
1.

– For each dot i write
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1
V

∫
d3~ri.

– Give a factor of N,N − 1,N − 2, ... for dots 1, 2, 3, ... corresponding.

– Finally divide by the symmetry factor, which is the number of per-

mutations of the diagram leaving the product fi j fkl (or the diagram)

unchanged.

Let us look at O( f 2) terms,

∫
dQ
VN

∑
i< j

∑
k<l

fi j fkl.

There are 2 ways to make the diagrams with 2 links: connected or discon-

nected.

a) connected

Figure 5.2: The diagram for two connected links

The symmetry factor is 2 because we can only change 1→ 3 in order to

get the same diagram again. The integral is then

N(N − 1)(N − 2)
2V3

∫
d3~r1d3~r2d3~r3 f (|~r1 − ~r2|) f (|~r2 − ~r3|).

b) disconnected

The symmetry factor is 8 because we can change 1 → 2, 3 → 4 and

12→ 34. The integral is then

1
8

N(N − 1)(N − 2)(N − 3)
V4

∫
d3~r1d3~r2d3~r3d3~r4 f12 f34 ≈

1
2

(
�
)2
.
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Figure 5.3: The diagram for two disconnected links

If we continued further we would get

Z
Zid

= 1+ � + �� + � · � + ��� +...+ � ·�� + � · � · � +...

The is called cluster expansion. We make an approximation ( f � 1) and take

a subject of connected diagrams (ireducible diagrams). Then connect them

and form higher-order terms, so that they can be cut. We take the simplest,

S1. So we get

Z
Zid
≈ 1+ � +

1
2

(
�
)2

+
1
3!

(
�
)3

+ ... = exp
(
�
)
. (5.1)

This is called Dyson equation.

2. The free energy and pressure

We know that S1 = −NnB2. First we calculate the free energy

F = −kBT ln
Z

Zid
+ Fid ≈ Fid − kBT ln(exp(S1)) − Fid − kBT �=

= Fid + kBTNnB2, B2 = −2π
∫

drr2 f (r).

Now we calculate the pressure,

P = −

(
∂Fid

∂V

)
T,N
− kBTN

(
−

N
V2

)
B2 =

NkBT
V

+ NkBTn
B2

V
.

Therefore we get a correction to the equation of state for gases,

PV
NkBT

= 1 + nB2. (5.2)
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5.2 Van-der-Waals equation

Let the potential be

u(r) =

 ∞, r < r0

−
c

rm , r > r0
.

We calculate the second virial coefficiant,

B2 = −2π
∫
∞

0
drr2 f (r) = −2π

∫
∞

0
drr2(exp(−βu) − 1) =

= −2π
∫ r0

0
drr2(exp(−∞) − 1) − 2π

∫
∞

r0

drr2(1 − βu − 1) =

= 2π
1
3

r3
0︸︷︷︸

≡b

+
1

kBT
2π

∫
∞

r0

drr2
(
−

c
rm

)
︸                 ︷︷                 ︸

≡−a

=

= b −
a

kBT
.

Then

PV
NkBT

= 1 + nb −
na

kBT
≈

1
1 − nb

− n
a

kBT
,

P ≈ NkBT
1
V

( 1
1 − nb

)
−NkBT

1
V

N
V

a
kBT

.

So we obtain the Van-der-Waals equation,

(P + an2)(V −Nb) = NkBT. (5.3)

We call Nb the exclusion volume and say that an2 is the pressure from the attrative long

distance force.
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6 Thermodynamics

6.1 Work and pressure

We consider a box with a volume V which can be compressed by a pisten moving dx

with the area A. So we get V → V + dV,

dV = −Adx.

The work done by the pisten on the gas is

dW = Fdx = PAdx = −PdV.

Remark The work by the gas is +PdV.

• In going from thermodynamic state 1 to 2 the work done on the system is

W = −

∫ 2

1
PdV.

Assumption: Such (and similar) formula hold for quasistatic processes only. Qua-

sistatic means very very slow. That is slower than the relaxation in the system. The

system is (close to) in equilibrium.

• Important: dW is the infinitesimal work - this is not an exact differential. Some-

times dW is written asd̄W.

• Exact differential d f performs like

∫ 2

1
d f = f (2) − f (1) ⇒

∫ 1

1
d f = 0.
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• Imperfect differential dg performs like

∫ 1

1
dg , 0.

The integration of
∫ 2

1
dg depends on the path from 1 to 2.

• Example: Let f (x, y) = xy. So we see that d f = ydx + xdy is an exact differential.

If we now just take dg = ydx we get this imperfect differential.

∫ (1,1)

(0,0)
dg =

 1/2,

0,

if the first way is x = y (straight line) and the second way is from the x-axis to the

y-axis (y is zero for the first part).

• Functions f whose infinitesimal d f is an exact differential are called state functions.

Popular examples are E,S,F. State functions depend on the state, not on the path.

Example: Ideal gas at constant T. If we change the volume from V1 → V2,

W = −

∫ 2

1
PdV = −

∫ V2

V1

PdV =

∣∣∣∣∣∣∣ PV = NkBT,

P = NkBT
V

∣∣∣∣∣∣∣ = −NkBT ln
[V2

V1

]
.

6.2 The first law of thermodynamics

Energy conservation in form of

dE = dQ + dW.

In this case dE is the increase of internal energy (E,E,U) of the system, dQ is the amount

of heat added to the system and dW is the amount of work done on the system.

• dE = dQ − PdV is an exact differential. Therefore dQ must be an imperfect

differential (since PdV is an imperfect differential). The dimension of energy is

Joule [J]. The dimension of thermal energy on the move (heat) is also Joule, but more

often it is given in calories,
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1 cal = 4.186 J.

One calory is the amount of energy needed to raise the temperature of 1 g of water

from 14.5 ◦C to 15.5 ◦C. The food industry also introduced

1 Cal = 4186 J = 1000 cal = 1 kcal.

• Some terminology is needed for many processes.

– adiabatic process: dQ = 0.

– isentropic system - adiabatic and quasistatic - dS = 0.

– isothermal system has dT = 0.

– isobaric system has dP = 0.

– isochoric system has dV = 0.

– Extensive quantities depend on the size of the system (∝ N) - like E,S,F,V,N, ...,

while intensive quantities donot depend on the size like T,P, µ,n = N/V, ....

6.3 Enthalpy and heat capacities

We know that

dQ = dE + PdV.

For the heat capacity we calculated

c =

(
dQ
dT

)
process

.

We also saw that

cV =

(
dQ
dT

)
V

=

(
dE
dT

)
V
.

Experimentally it is easier to measure
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cP =

(
dQ
dT

)
P
.

We get to this point by doing a simple Legendre-Transformation,

dQ = dE + PdV = dE + d(PV) − VdP = d(E + PV) − VdP = dH − VdP.

We call H the enthalpy,

H = E + PV, cP =

(
dH
dT

)
P
. (6.1)

Example: Ideal gas with E = 3
2NkBT, PV = NkBT gives us

H =
5
2

NkBT, cV =
3
2

NkB, cP =
5
2

NkB.

So we do see that cV > cP. This relation is always given.

6.4 Second law of thermodynamics

Ireversibility: There exists a state function, called entropy S, such that in an isolated

system ∆S ≥ 0.

• In a quasistatic process, dS = dQ/T, or S(2)−S(1) =
∫ 2

1
dQ/T, with dS being an exact

differential. Therefore dQ/T is an exact differential, which is quite remarkable.

Since S is a state function we see that S ≡ S(E,V,N) like in the microcanonical

ensemble (in the thermodynamic limit all ensembles are the same). So we get

dS =

(
∂S
∂E

)
V

dE +

(
∂S
∂V

)
E

dV,

with N being constant and not considering variations with N for simplicity. The

first law then states that

dE = dQ − PdV ⇒
dS

(∂S/∂E)V
= dQ ⇒ dQ

(
∂S
∂E

)
V

=
dQ
T
.
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• The entropy is extensive:

SA+B = SA + SB.

• The heat flows from a hotter to a cooler object. Consider two systems A,B

connected. TA > TB and ∆QA = −∆QB. So we calculate

∆SA+B = ∆SA + ∆SB =
∆QA

TA
+

∆QB

TB
= ∆QB

( 1
TB
−

1
TA

)
︸      ︷︷      ︸

≥0

≥ 0.

Therefore we see that ∆QB must be greater than zero - which means that the heat

does indeed only flow from a hotter to a cooler object.

• Removing internal constraints lead in general to entropy increase. This also

causes some irritations because we can show that from the SEQ we can see that

in the microscopic context dS/dt = 0. But according to the second law dS/dt ≥ 0.

Therefore from microscopic to macroscopic something happens (the reason for

this is still unknown - this is why it is called a law). Things are ireversible.

6.5 Third law of thermodynamics

At the limit T→ 0 we must have cV(T)→ 0.

Remark As T → 0, S goes to zero or a finite number so that S/N → 0. Classical ideal

gas does not follow the third law of thermodynamics, because cV is a constant. This is

fixed for Fermi and Bose gases.

6.6 Free energies

• 1st law: dE = TdS−PdV +µdN, with the new term µdN. There µ is the energy the

system gains when a particle is added to it, keeping V and S constant.

Remark Since for bosons µ < 0 (if εk > 0), if bosons can be created, µ → 0

otherwise the energy would be decreased to −∞ (by producing∞ bosons).
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• 2nd law: ∆S ≥ 0. Therefore in equilibrium S has its maximum (maximum

uncertainty).

1. Helmholtz free energy F

Consider a system in contact with a reservoir. We have V,N fixed, but the energy

can be exchanged,

∆E + ∆ER = 0,

because the whole system is isolated. In this notation ∆E is for the system and

∆ER for the reservoir. But the 2nd law states that

∆S + ∆SR ≥ 0.

Since the reservoir is not affected we have ∆ER = T · ∆SR (from the 1st law). This

brings us to

∆SR =
1
T

∆ER = −
1
T

∆E.

Then we have

∆S + ∆SR =
1
T

(T∆S − ∆E) ≥ 0.

As T > 0 we find that

∆E − T∆S = ∆F ≤ 0.

We found the Helmholtz free energy F,

F(T,V,N) = E − TS. (6.2)

From the 2nd law we see that for a system in contact with reservoir, fixed T,V,N

∆F ≤ 0. Therefore in equilibrium F has a minimum.

2. G,H,Φ

In the same way we can show that if the system is in contact with a reservoir for

fixed T,P,N we get the Gibbs free energy G,
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G(T,P,N) = E − TS + PV. (6.3)

We see directly that G reaches minimum, ∆G ≤ 0. For S,P,N we get the Enthalpy

H,

H(S,P,N) = E + PV. (6.4)

Again H reaches the minimum with ∆H ≤ 0. Finally we get the Grand Potential

Φ which reaches the minimum as well (∆Φ ≤ 0) for T,V, µ,

Φ(T,V, µ) = F − µN. (6.5)

Legendre transformation

Take f (x1, ..., xn) with d f =
∑

i uidxi, ui =
(
∂ f
∂xi

)
x j

. Now consider

g = f −
n∑

i=r+1

uixi, dg =

n∑
i=1

uidxi −

n∑
i=r+1

duixi −

n∑
i=r+1

uidxi.

This gives us

dg =

r∑
i=1

uidxi −

n∑
i=r+1

xidui ⇒ g ≡ g(x1, ..., xr,ur+1, ...,un).

We say that (u, x) are conjugate variables.

Different free energies are connected by Legendre transformation. An example would

be:

S = S(E,V,N),
1
T

=

(
∂S
∂E

)
V,N
.

Thus (T−1,E) are conjugate variables. We perform the Legendre transformation and

obtain

S −
1
T

E = −
1
T

(E − TS) = −
F
T
.
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6.7 Maxwell’s relations

Take
(
∂S
∂V

)
T,N

for instance. First find out which free energy (potential) has T,V,N as

natural variables? We see that this is the Helmholtz free energy F with the differential

dF = −SdT − PdV + µdN. Now we use the permutation of the second derivative and

obtain

(
∂S
∂V

)
T,N

=

(
∂2F
∂T∂V

)
=

(
∂2F
∂V∂T

)
=

(
∂P
∂T

)
V,N
.

This is a Maxwell’s relation. Another example would be
(
∂S
∂P

)
T,N

. Here the potential

would be dG = −SdT + VdP + µdN. We obtain

(
∂S
∂P

)
T,N

= −

(
∂V
∂T

)
P,N
.

We can use this to investigate the relation between cV and cP. For this we fix N. We get

cP = T
(
∂S
∂T

)
P
, dS =

(
∂S
∂T

)
V

dT +

(
∂S
∂V

)
T

dV.

By taking the derivate we obtain

(
∂S
∂T

)
P︸︷︷︸

1
T cP

=

(
∂S
∂T

)
V︸ ︷︷ ︸

1
T cV

+

(
∂S
∂V

)
T

(
∂V
∂T

)
P︸          ︷︷          ︸

Maxwell

.

By using Maxwell’s relations we get

1
T

cP =
1
T

cV −

(
∂P
∂V

)
T

[(
∂V
∂T

)
P

]2

.

We now define two important variables,

κT ≡ −
1
V

(
∂V
∂P

)
T

(compressibility),

α ≡
1
V

(
∂V
∂T

)
P

(expansibility).
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We can now write

cP − cV = V
T
κT
α2 > 0.

6.8 Gibbs-Duhem relation

First we need to know something about homogeneous functions. Let f = f (x) be such

that f (λx) = λk f (x). Then f is called homogeneous of k-order. We now consider k = 1,

thus f (λx) = λ f (x). By taking the derivative d/dλ we see that

f (λx)
d(λx)

d(λx)
dλ

!
= f (x) ⇒ f (x) = x ·

d f (x)
dx

.

For n variables we have the famous Euler relation,

f (x1, ..., xn) =
∑

i

xi

(
∂ f
∂xi

)
x j

. (6.6)

Back to thermodynamics. This is useful for extensive functions, like E = E(S,V,N), e.g.

E(2S, 2V, 2N) = 2E(S,V,N). We see that

E =

(
∂E
∂S

)
V,N

S +

(
∂E
∂V

)
S,N

V +

(
∂E
∂N

)
S,V

N.

From the 1st law we already know that E = TS − PV + µN. But since the differential of

the from the Euler’s equation obtained function is

dE = dTS + TdS − dPV − PdV + dµN + µdN !
= TdS − PdV + µdN,

we see directly that

SdT − VdP + Ndµ = 0. (6.7)

This is the Gibbs-Duhem relation. Applications of this equation would be

G = ETS + PV = TS − PV + µN − TS + PV = µN, Φ = E − TS − µN = −PV.
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So overall we can see that

G = µN, Φ = −PV. (6.8)

6.9 Conditions for thermodynamic equilibrium and

stability

From the 2nd law we know that when E,V,N are constant we have ∆S ≥ 0. Therefore

S has a maximum in equilibrium.

1. Principal of minimal E at S,V,N, constant Removing the constraint at fixed E leads

to ∆S(E) ≥ 0. Put the system in contact with reservoir, such that E can change,

but S is kept constant. So ∆S(E + ∆E). A Taylor expansion gives us

∆S(E) +

(
∂S
∂E

)
V,N

∆E = 0, ∆E = −T∆S(E) ≤ 0.

So we found that ∆E must be smaller than 0 when we have fixed S,V,N.

Remark We already know that E =
∑

i εipi. This gave us

δE =
∑

i

δεipi +
∑

i

εiδpi,

meaning that we have a work and an entropy part. Therefore the average E at

fixed S,V,N has a minimum in equilibrium. This gives us a contrast:

• Fixed E,V,N: S has maximum.

• Fixed S,V,N: E has minimum.

One analogy to this would be a circle with a perimeter. The circle is an object

which has for a fixed area a minimum perimeter and for a fixed perimeter a

maximum area (Area↔ entropy, perimeter↔ energy).

2. Conditions for equilibrium

We consider S,V,N constant and
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S = SA + SB ⇒ δSA = −δSB,

V = VA + VB ⇒ δVA = −δVB,

N = NA + NB ⇒ δNA = −δNB.

Removal of an internal constaint in equilibrium gives δE, change in energy:

δE ≈ δE(1) = (TA − TB)δSA − (PA − PB)δVA + (µA − µB)δNA = 0,

because E = E(S,V,N) has a minimum. In equilibrium we have

• TA = TB the thermal equilibrium,

• PA = PB the mechanical equilibrium and

• µA = µB the chemical equilibrium.

We call T = const., P = const. and µ = const. the thermodynamic equilibrium.

Example We consider two connected boxes with µA > µB with particles can be

exchanged. We do want to know about the particle flow. We know that V and E

are fixed and ∆NA = −∆NB. Since ∆E is fixed (energy conservation) we see that

∆E = 0 = T∆S + µ∆N ⇒ ∆S = −
µ

T
∆N.

So overall we have

∆S = ∆SA + ∆SB = −
µA

T
∆NA −

µB

T
∆NB = −

1
T

(µA − µB)∆NA ≥ 0.

So we know that ∆NA must be lower than 0 which gives us the particle flow from

A to B. The particles flow from higher to lower µ.

3. Conditions for stability

E = E(S,V,N) should have a minimum in equilibrium. In equilibrium we have

(δE)S,V,N = 0, (δ2E)S,V,N ≥ 0.

Remark This could be a confusion, since the 2nd law of thermodynamics states

∆E ≤ 0. But this is only in equilibrium (going into the equilibrium by removing
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internal constraints). In this case we are looking at spontaneous changes δE ≥ 0,

thus going away from equilibrium.

Suppose a gas in equilibrium and a pushable wall between two boxes (sponta-

neous fluctuation). We say that

• δ2E > 0 is stable equilibrium.

• δ2E = 0 is a state which cannot decide. We do have to look at higher

variations.

• δ2E < 0 is unstable equilibrium.

Now consider δNA = δNB = 0 and δVA = δVB = 0. We also have δSA = −δSB. We

calculate

δ2E = δ2EA + δ2EB =
1
2

(
∂2EA

∂S2
A

)
VA,NA

δS2
A +

1
2

(
∂2EB

∂S2
B

)
VB,NB

δS2
B =

=
1
2

( ∂2

EA
∂S2

A

)
VA,NA

+

(
∂2

EB
∂S2

B

)
VB,NB

 δS2
A =

1
2

[
TA

cV,A
+

TB

cV,B

]
δS2

A =

= |TA = TB| =
1
2

TA

(
1

cV,A
+

1
cV,B

)
δS2

A > 0.

This follow because the partition ration A to B is arbitrary. Therefore we found

that cV > 0! We did already know this from chapter ??.

Consider the Helmholtz free energy F = F(T,V,N). We see that δF = 0 and δ2F > 0

with fixed T,V,N. By looking at TA = TB with NA,NB fixed and δVA = −δVB we

see that

δ2F = −
1
2

(∂PA

∂VA

)
TA,NA

+

(
∂PB

∂VB

)
TB,NB

 δV2
A > 0.

So we conclude that ∂P/∂V < 0 for fixed T,N. We see also that κ > 0 and

cP > cV > 0.

Remark We can partition extensive variables only! For example we cannot say

that TA + TB is fixed.
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7 Phase transitions and critical
phenomena

7.1 Phase equilibria

From the Gibbs-Duhem relation SdT − VdP + Ndµ = 0 we get that

dµ = −
S
N

dT +
V
N

dP = −sdT + vdP, s = S/N, v = V/N.

Therefore we conclude that µ is a function of the two variables T,P only, µ ≡ µ(T,P).

Suppose now that we have ν different phases. A phase can be a gas, liquid or solid etc.

• Question Can different phases coexist (be together) in equilibrium?

Answer T,P are equal for all phases (µ must be equal) so that

µ1(T,P) = µ2(T,P) = ... = µν(T,P).

So we have ν − 1 equations.

• Define f , the number of degrees of freedom, which is the number of unknown

variables minus the number of equations, so

f = 2 − (ν − 1) = 3 − ν. (7.1)

This is the so called Gibbs phase rule.

• Discussion

– For ν = 3 we get f = 0 which is a unique solution (T0,P0) (triple point or TP).

Three phases can coexist in a point in the (P,T) plane.
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– For ν = 2 we get f = 1 which gives us P ≡ P(T) - that specifies a line. Two

phases can coexist along a coexistence line (curve).

Remark The strategy to solve µ1(T,P) = µ2(T,P) is to fix T first and then to

get P(T).

– For ν = 1 we get f = 2 and thus the whole (P,T) plane. One phase exists in a

plane.

– For ν ≥ 4 we find that four or more different phases cannot coexist together in a

one component system.

– If the system has r components (types of atoms / molecules) then we have

f = 2 + r − ν. (7.2)

Therefore in a two component system for example we can have 4 phases in

a point.

• A generic phase diagram is shown in figure 7.1.

Figure 7.1: A valid phase diagram with three phases, two triple points and a

critical point

We can build an invalid phase diagram by having another phase in it, with a

point where all phases are combined but having only a one component system.

Therefore we do have to look for the intersection of such coexistence lines.
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• At the critical point is a phase transition of the 2nd type (continuous). Above the

critical point (CP) we cannot distinguish between phases. So by going through

a line of coexistence we are able to see the change (e.g. in entropy) but if we go

from one phase to the other above the critical point we see not difference between

the phases. So for example we would say that water and vapor are the same!

7.2 Abrupt phase transitions - Clausius-Clapeyron

equation

We set G = µN and consider two phases with G1 and G2. We say that

• if G1 < G2 then phase 1 wins,

• if G1 > G2 then phase 2 wins and

• if G1 = G2 then we have µ1 = µ2 and therefore coexistence.

We can draw phase diagram like the graphs in figure 7.2.

Figure 7.2: Possible graphs of heat capacity (C) against temperature (T) at a phase

transition

• We derive that

V =

(
∂G
∂P

)
T,N

= N
(
∂µ

∂P

)
T
, v =

(
∂µ

∂P

)
T
.

• In the same way we obtain that

S = −

(
∂G
∂T

)
P,N

= −N
(
∂µ

∂T

)
P
, s = −

(
∂µ

∂T

)
P
.
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• At the coexistence curve we have a densities change v1 , v2 and latent heat s1 , s2.

This is called abrupt transition.

• At the critical point we have v1 = v2 and s1 = s2. This is why this is called

continuous transition (higher derivatives of G are not continuous).

• At the coexistence line we have µ1(T,P) = µ2(T,P). Along the coexistence line we

find dµ1 = dµ2. By using the Gibbs-Duhem relation dµ = −sdT + vdP we obtain

that

dµ1 = −s1dT + v1dP !
= −s2dT + v2dP = dµ2.

This gives us dP(v1 − v2) = dT(s1 − s2) which leads to the Clausius-Clapeyron

equation,

dP
dT

=
s1 − s2

v1 − v2
=

l
T

1
∆v
. (7.3)

We introduced the latent heat of the transition l, with s1 − s2 = ∆s = l/T, by using

the temperature of the transition T. The solution of this equation is P ≡ P(T), the

coexistence curve.

• Typical phase diagrams are shown in figure 7.3.

Figure 7.3: The phase diagrams for a generic (1st picture) and water (2nd picture)

substance
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Figure 7.4: A P − V diagram for the phase transition of a generic (not an anomaly)

substance

7.3 Nucleation

Vapor to liquid transition at temperature Ttr. Condensation into water droplets.

Droplets growth is irupeded by surface tension σ. It costs energy 4πR2σ to grow a

droplet of radius R.

• At T = Ttr we have Ggas = Gliquid.

• At T = Ttr + ∆T we can make a Taylor expansion and get

Ggas − Gliquid ≈
∂
∂T

(Ggas − Gliquid)
∣∣∣∣∣
T=Ttr

∆T = −(Sgas − Sliquid)
∣∣∣
Ttr

∆T = −N∆s∆T.

We can rewrite this and obtain

Gliquid = Ggas + Vn
l

Ttr
∆T.

• If ∆T > 0 we get that Gliquid > Ggas and therefore we are in the gas phase.

• If ∆T < 0 we get that Gliquid < Ggas and therefore we are in the liquid phase.

Consider the energy required to make one droplet of radius R. Cost of energy compared

to having just gas is

∆E|Droplet = Gliquid + 4πR2σ − Ggas.

Therefore we obtain that
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∆E|Droplet =
4
3
πR3︸︷︷︸

=VDroplet

nliquid
l

Ttr
∆T︸︷︷︸
<0

+4πR2σ = −αR3 + βR2.

We get a plot like the one shown in figure 7.5.

Figure 7.5: The cost of energy ∆E to make one droplet of radius R

The cost of energy to go from gas to water is given by a barrier called B. We see a

maximum at RC which gives us this barrier B. We can calculate that

∆E′(R = RC) = 0 ⇒ RC = −
2σTtr

nliquidl∆T
∝ σ/∆T.

For the barrier B we obtain that

B = ∆E(R = RC) =
16πσ3T2

tr

3n2
liquid

1
l2

1
∆T2 ∝ σ

3/∆T2.

The droplet creation (nucleation) rate is given by

∝ exp(−B/kBTtr).

An application of this would be how to boil water in a microwave. By using a clean

glass (washed by a dishwasher) we have a large σ and thus a large RC. Therefore we

obtain large bubbles which could damage the glass. If we use a cloth to wipe out the

glass we have a reduced σ and thus the boiling is less violent.
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7.4 Continuous phase transitions - Landau’s theory

1st order phase transitions (abrupt) are claled nucleation (last section). 2nd order phase

transitions (continuous) perform spontaneous symmetry breaking.

1. mechanical analog (rod-spring model)

The question is in which direction does the rod fall? The Hamiltonian ist symmet-

ric with respect to the possible directions. But the physical realization (ground

state) is not! Thus we say that the symmetry is broken.

We now support the rod with springs. We have to find two potential energies:

• The potential energy of the two springs.

• The potential energy of the rod.

We find that

uspring = 2
1
2

k(displacement/streching)2 = kR2ϕ2,

urod = mg
l
2

cosϕ ≈ G
l
2

(
1 −

1
2
ϕ2 +

1
24
ϕ4

)
.

The total energy is then given by

u = uspring + urod =
1
2

Gl +
1
2

(
2kR2

−
1
2

Gl
)
ϕ2 +

Gl
48
ϕ4.

We have to dinstinguish now two cases:

• 2kR2 > 1
2Gl. We see in figure 7.6 (Graph 1) that we have a minimum at ϕ = 0.

Therefore we are in equilibrium and are always stable!

• 2kR2 < 1
2Gl. We see in figure 7.6 (Graph 2) that we have two minima -

therefore we have two equal choices. This is called spontaneous symmetry

breaking. The minima occur at ±ϕ0 with

ϕ0 =

√
12

(
1
2
−

2kR
Gl

)
=

√
6

G − Gc

G
∝ (G − Gc)1/2, Gc ≡ 4kR2/l.

105



Chapter 7. Phase transitions and critical phenomena

Figure 7.6: The first graph is always stable in ϕ = 0 while in the second graph the

symmetry is broken for the second case with two minima - symmetric in ϕ

Figure 7.7: We see no jump in ϕ ∝
√

G − Gc - therefore continuous

We say that 1/2 is the critical exponent. We see in figure 7.7 thatϕ ∝
√

G − Gc

for G > Gc.

we call ϕ the order-parameter with two special variants:

– ϕ = 0: disordered phase

– ϕ , 0: ordered phase

Going through Gc is a phase transition. The order parameter ϕ changes

continuously at G = Gc. Thus we have a continuous phase transition. The

three most important graphs are shown in figure 7.8.

The system is symmetric when we have u(ϕ) = u(−ϕ).
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Figure 7.8: The graphs for G < Gc, G = Gc and G > Gc (phase transition)

2. Landau theory of paramagnet-ferromagnet transitions

Experimental we get a graph like the one shown in figure 7.9. From Landau

comes the concept of order parameter - here: magnetization M.

Figure 7.9: Experimental picture with the temperature T in units of the critical

temperature TC

The Landau free energy is defined as

F ≡ F(T,V,M) = F0(T,V) +
1
2

aM2 +
1
4

bM4, a ≡ a(T), b ≡ b(T) > 0.

This is valid close to TC, where M is small. We set b(T) > 0 due to stability. If it

would be negative we would have to look at higher orders.

Question Why there are no odd powers of M?

Answer F(M) = F(−M) - so symmetry is the reason!
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• In equilibrium we see that F will have a minimum, so

∂F
∂M

= 0 ⇒ aM + bM3 = 0.

• For a > 0 we only have M = 0.

• For a < 0 we have

M = ±

√
−

a
b
.

• The big idea from Landau was that a ≡ a(T) and that the ’most reasonable’

(sometimes called biblical) ansatz would be

a ∝ (T − TC).

• At T < TC we have

M = ±

√
−
α
b

(T − TC) ∝ (TC − T)1/2,

with the critical exponent β being 1/2. So we say that ’Magnetization at

T < TC, but close to TC, goes as (TC − T)1/2.’

3. Critical exponents

Close to TC we have:

M ∝ (TC − T)β, T < TC,

M ∝ B1/δ, T = TC,

χ ∝ (T − TC)−γ, T > TC,

χ ∝ (TC − T)−γ
′

, T < TC,

cB = T
(
∂S
∂T

)
B
∝ (T − TC)−α, T > TC,

cB ∝ (TC − T)−α
′

, T < TC.

So we have critical exponents α, β, γ, δ, ...!

108



Chapter 7. Phase transitions and critical phenomena

4. Critical exponents in Landau-theory

In a magnetic field B we have

F = F0 +
1
2

aM2 +
1
4

bM4
− BM.

From our minimum condition we get

∂F
∂M

= aM + bM3
− B = 0 ⇒ M(a + bM2) = B.

Therefore at T = TC with a = 0 we get

bM3 = B ⇒ M ∝ B1/3.

So we found out that δ = 3.

We can do the same for χ. We know that

χ = µ0

(
∂M
∂B

)
, aM + bM3 = B ⇒ a

∂M
∂B

+ 3bM2∂M
∂B

= 1.

So we see that at T > TC with M = 0 we have

χ =
µ0

a
∝

1
T − TC

= (T − TC)−1,

which is γ = 1. At T < TC we haev M2 = −a/b and thus

χ =
µ0

a − 3a
= −µ0/2a ∝ (TC − T)−1.

Therefore γ′ = 1 as well. This gives us a graph like the one in figure 7.10.

We set B = 0 and get F. At T > TC we see that S = S0. At T < T0 we obtain that

S = S0 +
1
2
α2

b
(T − TC).

So ’F and S are continuous at T = TC’.

We now calculate cB which is (close to TC)

cB = TC

(
∂S
∂T

)
B
.
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Figure 7.10: χ diverges at TC as we calculated with the temperature in units of TC

We obtain that at T > TC we have cB0 and at T < TC we have cB0 + 1
2
α2

b TC. So we

say that the critical exponent is 0 in Landau’s theory. We also see from picture

7.11 that cB has a jump at TC. So this is discontinuous / abrupt!

Figure 7.11: cB has a jump at T = TC with cB0 being a function of T in units of the

critical temperature

The gap is 1
2TCα2/b.

7.5 The Ising model: One dimensional

Let the Hamilton operator be

110



Chapter 7. Phase transitions and critical phenomena

H = −J
∑
〈i, j〉

sis j,

with the nearest neighbors 〈i, j〉, si = ±1 and J the exchange intergral (exchange cou-

pling). We know that

• J > 0 for ferromagnetic ground state (↑↑↑↑) and

• J < 0 for antiferromagnetic ground state (↑↓↑↓).

Note In quantum mechanics we learned that Coulomb interaction and Pauli principle

lead to the Heisenberg Hamiltonian

H = −J~s1 · ~s2

for two electrons. The Ising model is a simplified classical version.

Let us solve the one dimensional Ising model. We need to calculate the partition sum,

Z ≡ Z(β) =
∑
{s}

exp(−βH(s)) =
∑

s1=±1

∑
s2=±1

· · ·

∑
sN=±1

exp(βJs1s2 + βJs2s3 + ... + βJsN−1sN).

• Take first the last sum

∑
sN

exp(βJsN−1sN) = exp(βsN−1) + exp(−βsN−1).

• The good thing is that for sN−1 = ±1 we have

∑
sN

exp(βJsN−1sN) = 2 cosh(βJ),

which is independent of sN−1!

• We get

sN−1 = 1 : exp(βJ) + exp(−βJ) = 2 cosh(βJ),

sN−1 = −1 : exp(−βJ) + exp(βJ) = 2 cosh(βJ).
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• This leads to

Z =
∑

s1

∑
s2

· · ·

∑
sN−1

exp(βJ(s1s2 + ... + sN−2sN−1))2 cosh(βJ) =

=
∑

s1

· · ·

∑
sN−2

exp(βJ(s1s2 + ... + sN−3sN−2))(2 cosh(βJ))2 =

=
(
2 cosh(βJ)

)N−1
∑

s1=±1

1︸︷︷︸
=2

= 2N coshN−1(βJ) N�1
=

(
2 cosh(βJ)

)N ,

which is exact in the thermodynamic limit! We will now calculate the thermody-

namic quantities.

• The free energy is

F = −kBT ln Z = −kBTN ln(2 cosh(βJ)).

• The internal energy is

E = −
d

dβ
ln Z = −NJ tanh(βJ).

For the limit T → 0 with β → ∞ we obtain that E → −NJ. Otherwise for T → ∞

with β → 0 we see that −NJ2β → 0. Since F is analytic (no divergences in its

derivation) at all T > 0, there are no phase transitions in the one dimensional

Ising model! In one dimensional Ising model the phase is a paramagnet at all

T > 0! In T = 0 it is a ferromagnet - but since T = 0 cannot be reached it is obsolete.

7.6 One dimensional Ising model: renormalization

group (RG)

K. Wilson calculated this in the 1970’s starting with

Z =
∑
{s}

exp

βJ
∑
〈i, j〉

sis j

 =
∑
{s}

exp

K
∑
〈i, j〉

sis j

 ,
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with K = βJ = J/kBT. We consider a one dimensional Ising model with periodic

boundary conditions, meaning sN+1 ≡ s1. We calculate

Z =
∑
{s}

exp

K
N∑

i=1

sisi+1

 =
∑

s1

∑
s2

· · ·

∑
sN

exp(K(s1s2 + s2s3 + ...)) =

=
∑

s1

· · ·

∑
sN

exp(Ks2(s1 + s3) + Ks4(s3 + s5) + ...).

• Let us sum over all the even spins only:

Z =
∑

s1

∑
s3

· · ·

[
eK(s1+s3) + e−K(s1+s3)

] [
eK(s3+s5) + e−K(s3+s5)

]
[...] .

We now want to rewrite this new (called decimated) system to look like the old

one. We see that the effective distance has increased from a→ 2a and the coupling

constant has changed from K → K′. This is called resclaing or coarse graining.

Mathematically this is

exp(K(s1 + s3)) + exp(−K(s1 + s3)) ?
= A(K) exp(K′s1s3).

• We know that when s1 = s3 = ±1 we have

exp(2K) + exp(−2K) !
= A(K) exp(K′).

We also know that for s1 , s3 = ±1 we obtain that

1 + 1 !
= A(K) exp(K′).

So we have two equations with two unknown variables. This can be solved. We

get

A(K) = 2 exp(K′), 2 cosh(2K) = A(K) exp(K′) = 2 exp(2K′).

Therefore afterall we have

K′ =
1
2

ln cosh(2K), A(K) = 2
√

cosh(2K). (7.4)
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• Then we take

Z =
∑

odd spins

[A(K)]N/2 exp(K′(s1s3 + s3s5 + ...)).

Let us write

Z ≡ Z(K,N) = [A(K)]N/2 Z(K′,N/2).

• We introduce now f = (ln Z)/N = −F/kBTN with our free potential F = −kBT ln Z.

We calculate

f = f (K) =
1
N

ln Z(K,N) =
1
N

ln
(
[A(K)]N/2Z(K′,N/2)

)
=

=
1
N

N
2

ln A(K) +
1
N

ln Z(K′,N/2) =
1
2

ln A(K) +
2
N

1
2

ln Z(K′,N/2)︸               ︷︷               ︸
= 1

2 f (K′)

=

=
1
2
[
ln A(K) + f (K′)

]
.

So we see that

f (K′) = 2 f (K) − ln A(K) = 2 f (K) − ln
[
2
√

cosh(2K)
]
.

We found the renormalization group equations, which give us the renormalization

group flow,

K′ =
1
2

ln [cosh(2K)] , f (K′) = 2 f (K) − ln
[
2
√

cosh(2K)
]
. (7.5)

• Let’s take for example K = 1. Then K′ is 1. By calculating K′′ we receive 0.66 then

0.35 then 0.11 and so on... Therefore we see that

– At K = 0 which is T = ∞we have a stable renormalization group fixed point,

because K = 0 gives us K′ = 0.

– At K = ∞ which is T = 0 we have an unstable renormalization group fixed

point.
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So the flow is from K = ∞ to K = 0. We say that K = ∞ is ordered while everything

else is disordered. We also see a phase transition at T = 0.

• A fixed point is where all length scales are equivalent. So fractal, universality,

power laws. Therefore we see that a critical exponent is the same for all ferro-

magnets.

• Universality means that α, β, γ, δ, ... depend on the dimensionality and geometry.

If d ≥ 4 all systems behave as in Landau’s theory. The reason for this is that

Landau neglected fluctuations, which are very important for systems with d < 4.

7.7 Ising model in two dimensions: Renormalization

Group

By rotating a square lattice by π/4 (decimation), and therefore summing over every

other spin. We are doing the in figure 7.12 shown process on the lattice.

Figure 7.12: The rough sketch of the setup used for our calculation

Let us look at the structure of the partition function,

Z =
∑
{s}

exp(K(s1s5 + s2s5 + ...)) =
∑
{s}

exp(Ks5(s1 + s2 + ...)) exp(Ks6(s2 + s3 + ...)) =

=

′∑
· · ·

[
exp(K(s1 + s2 + s3 + s4)) + exp(−K(s1 + s2 + s3 + s4))

]
· · ·

· · ·
[
exp(K(s2 + s3 + s7 + s8)) + exp(−K(s2 + s3 + s7 + s8))

]
.

We would like to find K′ and A(K) such that
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exp(K(s1 + s2 + s3 + s4)) + exp(−K(s1 + s2 + s3 + s4)) !
= A(K) exp(K′(s1s2 + s1s4 + s2s3 + s4s4)).

We have 4 inequivalent choices of s1, s2, s3, s4:

• For s1 = s2 = s3 = s4 = ±1.

• For s1 = s2 = s3 = −s4 = ±1.

• For s1 = s2 = −s3 = −s4 = ±1.

• For s1 = −s2 = s3 = −s4 ± 1.

But only 2 unknown K′,A. We need to make the Hamiltonian bigger. So we proceed

exp(K(s1 + s2 + s3 + s4)) + exp(−K(s1 + s2 + s3 + s4)) !
=

!
= A(K) exp(

1
2

K1(s1s2 + s1s4 + s2s3 + s4s4) + K2(s1s3 + s2s3) + K3(s1s2s3s4)).

Remark A system with three spins s1, s2, s3 is not possible because it violates up and

down symmetry. Let us insert the four possibilities for s. We obtain

exp(4K) + exp(−4K) = A(K) exp(2K1 + 2K2 + K3),

exp(2K) + exp(−2K) = A(K) exp(−K3),

2 = A(K) exp(−2K2 + K3),

2 = A(K) exp(−2K1 − 2K2 − K3).

The solution is

K1 =
1
4

ln cosh(4K), K2 =
1
8

ln cosh(4K), K3 =
1
8

ln cosh(4K) −
1
2

ln cosh(2K).

Let us go back to the partition function, we have

Z(K,N) = (A(K))N/2
′∑
{s}

· · ·

[
exp(

K1

2
(s1s2 + s1s4 + s2s3 + s4s4) + K2(s1s3 + s2s4) + K3(s1s2s3s4))

]
· · ·

· · ·

[
exp(

K1

2
(s3s8 + s8s7 + s2s3 + s7s2) + K2(s2s8 + s7s3) + K3(s2s3s7s8))

]
.
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Each nearest neighbour bond appears twice (s2s3). We conclude

Z(K,N) = (A(K))N/2
′∑
{s}

exp

K1

∑
〈i, j〉

sis j + K2

∑
〈〈i, j〉〉

sis j + K3

∑
�

sisisksl

 ,
with 〈i, j〉 nearest neighbors, 〈〈i, j〉〉 next nearest neighbors and the plaquette �. Up to

now we have made no approximation. Since things are quite complicated we will now

make an approximation.

1. Take K2 = K3 = 0. Then we see that

Z(K,N) ≈ (A(K))N/2Z(K1,N/2), K1 =
1
4

ln cosh(4K).

This is the same renormalization group flow as in the one dimensional Ising

model, where we had K′ = 1
2 ln cosh(2K).

2. A better choice would be K3 = 0. We motivate the selection of K2 physically by

including the next nearest neighbor in the coupling as if it would be a first nearest

neighbor coupling. We obtained

K1

∑
〈i, j〉

+K2

∑
〈〈i, j〉〉

s1s2 ≈ K′(K1,K2)
∑
〈i, j〉

s1s2.

Take all spins si = 1. We see

K12
N
2

+ K22
N
2

= K′2
N
2
.

Remark For N lattice points there are 2N bounds. So we have

K′ = K1 + K − 2 =
3
8

ln cosh(4K).

The approximate renormalization group flow is then given by

K′ =
3
8

ln cosh(4K). (7.6)

So now we have a non-trivial behaviour for our system (just by changing 1/4 = 2/8 to

3/8). We can calculate that for KC = 0.50698 we have a fixed point. Below the fix point

we have a paramagnet with a fow to K = 0 (T = ∞) and above we have a flow to K = ∞
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(T = 0) - which is a ferromagnet. So we have a phase transition at KC! This corresponds

to

kBTC = 1.972 J ≈ (kBTC)exact = 2.269 J.

We are able to obtain this KC by solving the equation

KC =
3
8

ln cosh(4KC).

Therefore we can find the very important critical exponent (universality). These critical

exponents are very important, because they do only depend on the geometry and the

dimensionality of the system, while TC depends on microsocopics (J). Illustration of

universality is

α = 2 −
ln 2

ln
∣∣∣∣∣dK′

dK

∣∣∣∣∣
K=KC

.

The exact α would be 0 - or log. Therefore we have C ∝ ln(T − TC). For our renormal-

ization group model we have

α = 2 −
ln 2

ln
3
2

tanh(4KC)
= 0.131.
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8 Appendix

8.1 Volume of a sphere in n dimensions

Let us denote

r2 = x2
1 + ...x2

N,

Vn =

∫
r2≤R2

dx1dx2 · · · dxN =

∫ R

0
drRn−1

∫
dΩn =

=
1
n

RnΩn,

where Ωn is the solid angle. We use the following trick to get Ωn:

I =

∫
∞

−∞

dx1dx2 · · · dxN exp(−x2
1 − x2

2 − ... − x2
N).

We solve it by two methods:

1. First by a gaussian integral

I =

∫
∞

−∞

exp(−x2
1)dx1

∫
∞

−∞

exp(−x2
2)dx2 · · ·

∫
∞

−∞

exp(−x2
N)dxN =

=

[∫
∞

−∞

dx exp(−x2)
]n

=
√
πn = π

n
2 .

2. Second by substituting t = r2 and dr = 1
2

1
√

t
dt,
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I =

∫ R

0
drrn−1 exp(−r2)

∫
dΩn = Ωn

∫ R

0
drrn−1 exp(−r2) =

= Ωn

∫
∞

0

1
2

dt
√

t
t

n
2−

1
2 exp(−t) =

=
1
2

Ωn

∫
∞

0
dtt

n
2−1 exp(−t) =

1
2

ΩnΓ
(n

2

)
.

We note that Γ(x) is Eulers Gamma Function.

By comparing these two methods we get that

Ωn =
2π

n
2

Γ(n
2 )
. (8.1)

Basic properties of the Γ-Function:

Γ(
1
2

) =
√
π,

Γ(1) = 1,

Γ(x + 1) = xΓ(x),

Γ(x) = (x − 1)!,

Γ(
n
2

) =
(n − 2)!!

√
π

2
(n−1)

2

.

The volume of the n-sphere is

Vn =
2π

n
2 Rn

nΓ(n
2 )

=
π

n
2 Rn

n
2 Γ(n

2 )
=

π
n
2 Rn

Γ(n
2 + 1)

. (8.2)

8.2 Stirling’s formula

The Stirling formula gives an approximation to the factorial of a large number, N � 1.

In its simple form it is,

N! ≈
(N

e

)N

=⇒ ln N! ≈ N ln N −N =⇒
d ln N!

dN
≈ ln N. (8.3)
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The easy-to-remember proof is in the following intuitive steps:

ln N! = ln 1 + ln 2 + ... + ln N ≈
∫ N

1
dx ln x = N ln N −N + 1 ≈ N ln N −N. (8.4)

The stronger form of the Stirling formula reads,

N! ≈
(N

e

)N √
2πN =⇒ ln N! ≈ N ln N −N +

1
2

ln 2πN. (8.5)

The proof is more subtle and uses the Euler Γ function. Recall that

N! = Γ(N + 1) =

∫
∞

0
dx xN+1−1e−x =

∫
∞

0
dx xNe−x. (8.6)

Denote

φ(x) = N ln x − x, (8.7)

so that

xNe−x = eφ(x). (8.8)

The function φ(x) has maximum at x0 such that φ′(x0) = 0. We can find it,

φ′(x) =
N
x
− 1 =⇒ x0 = N. (8.9)

Let us expand φ(x) around x0:

φ(x) = φ(x0) + φ′(x0)(x − x0) +
1
2
φ′′(x0)(x − x0)2 + ... (8.10)

The linear term vanishes, since φ′(x0) = 0, while the second derivative is

φ′′(x) = −
N
x2 =⇒ φ′′(x0) = −

N
x2

0

= −
1
N
. (8.11)

We then have up to the second order,

φ(x) ≈ N ln N −N −
1

2N
(x −N)2. (8.12)

Or,

eφ(x)
≈ eN ln N−Ne−(x−N)2/2N =

(N
e

)N

e−(x−N)2/2N. (8.13)
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We thus get the Gaussian integral,

N! =

∫
∞

0
dx eφ(x)

≈

(N
e

)N ∫
∞

0
e−(x−N)2/2N

≈

(N
e

)N ∫
∞

−∞

e−(x−N)2/2N =
(N

e

)N √
2πN. (8.14)

Note the change of the lower integration limit from 0 to −∞ in the last integral. This

change is possible since the integrand has maximum at N, so at x < 0 the integrand is

negligible.

This completes the proof. The above method of approximating integrals by expanding

the exponent is called the saddle-point approximation. This trick is used to calculate

things in statistical physics and quantum field theory.

8.3 Bose-Einstein and Fermi-Dirac Integrals

Consider an integral of the form

I(p) =

∫
∞

0
dx

xp−1

exp(x) − 1
, p > 1.

We can solve such an integral by using the geometric series expansion. In the end we

have

I(p) = ζ(p)Γ(p).

We can do the same for

J(p) =

∫
∞

0
dx

xp−1

exp(x) + 1
, p > 1.

With some little tricks we arrive at

J(p) =
(
1 −

1
2p−1

)
ζ(p)Γ(p).

Some important values of ζ(p) and Γ(p) are listed below:
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p = 3/2, ζ(p) = 2.612, Γ(p) =
√
π/2,

p = 5/2, ζ(p) = 1.341, Γ(p) = 3
√
π/4,

p = 3, ζ(p) = 1.202, Γ(p) = 2,

p = 4, ζ(p) = π4/90, Γ(p) = 6,

p = 6, ζ(p) = π6/945, Γ(p) = 120.

8.4 Equipartition theorem

We essentially follow the proof given by K. Huang, Statistical Physics, and adopt it to

the notation used in the class.

We have learned in chapter 3.1 (i), that for N indistinguishable classical particles of

total energy E, the microcanonical averages of a physical observable A(Q,P), are,

A =
1

g(E)

∫
dQdP
h3NN!

A(Q,P)δ [E −H(Q,P)] , (8.15)

where the density of states is related to the number of states below energy E,

g(E) =
dΓ(E)

dE
; Γ(E) =

∫
dQdP
h3NN!

Θ [E −H(Q,P)] =

∫
H(Q,P)<E

dQdP
h3NN!

. (8.16)

Make a specific choice for the observable A, as

A = xi
∂H
∂x j

, (8.17)

where xi denote either the generalized coordinate qi or generalized momentum pi. Here

index i goes from 1 to 3N. Then

xi
H
∂x j

=
1
g

∫
dQdP
h3NN!

xi
∂H
∂x j

δ(E −H) (8.18)

=
1
g
∂
∂E

∫
H(Q,P)<E

dQdP
h3NN!

xi
∂H
∂x j

(8.19)

=
1
g
∂
∂E

∫
H(Q,P)<E

dQdP
h3NN!

xi
∂(H − E)
∂x j

(8.20)

=
1
g
∂
∂E

∫
H(Q,P)<E

dQdP
h3NN!

∂[xi(H − E)]
∂x j

− δi j
1
g
∂
∂E

∫
H(Q,P)<E

dQdP
h3NN!

(H − E).(8.21)
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The first integral on the right-hand side of the last line vanishes, since∫
H(Q,P)<E

dQdP
∂[xi(H − E)]

∂x j
= 0, (8.22)

as it can be transformed to a surface integral, with the surface defined by H(Q,P) = E,

of xi(H − E) which vanishes identically on that surface; we always have H = H(Q,P),

just shortening the notation and omitting (Q,P).

Finally, we then write that

xi
H
∂x j

= −δi j
1
g
∂
∂E

∫
H(Q,P)<E

dQdP
h3NN!

(H − E) (8.23)

= −δi j
1
g

∫
dQdP
h3NN!

∂
∂E

[Θ(E −H)(H − E)] (8.24)

= δi j
1
g

∫
dQdP
h3NN!

Θ(E −H) (8.25)

= δi j
1
g

Γ = δi j
Γ

dΓ/dE
= δi j

1
d ln Γ/dE

(8.26)

= δi jkB

(
dkB ln Γ

dE

)−1

(8.27)

= δi jkB

(
dS
dE

)−1

(8.28)

= δi jkBT. (8.29)

In the above derivation we have used the following formulas derived for the micro-

canonical ensemble in the class:

S = kB ln Γ, (8.30)
1
T

=
∂S
∂E
. (8.31)

To summarize, the generalized equipartition theorem reads,

xi
H
∂x j

= δi jkBT. (8.32)

If we choose for xi either qi or pi, we get individually the equipartition theorem for

generalized coordinates and momenta:

qi
H
∂qi

= pi
H
∂pi

= kBT. (8.33)

The above was the starting point to derive the virial theorem in the class.
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8.5 Sommerfeld’s expansion

Consider integral,

I(µ) =

∫
∞

0
dε

ϕ(ε)
eβ(ε−µ) + 1

, (8.34)

where ϕ(ε) is some well behaved function. Let us introduce a new variable x,

x = β(ε − µ), ε = µ + kBTx. (8.35)

The integral transforms to

I(µ) = kBT
∫
∞

−µ/kBT
dx
ϕ(µ + kBTx)

ex + 1
= kBT

∫ 0

−µ/kBT
dx
ϕ(µ + kBTx)

ex + 1
+ kBT

∫
∞

0
dx
ϕ(µ + kBTx)

ex + 1
.

(8.36)

Let us work little bit on the first integral on the right,∫ 0

−µ/kBT
dx
ϕ(µ + kBTx)

ex + 1
= |x→ −x| =

∫ µ/kBT

0
dx
ϕ(µ − kBTx)

e−x + 1
=

=

∣∣∣∣∣ 1
e−x + 1

= 1 −
1

ex + 1

∣∣∣∣∣ =
1

kBT

∫ µ

0
dzϕ(z) −

∫ µ/kBT

0
dx
ϕ(µ − kBTx)

ex + 1
.

We have introduced new variable z, by

z = µ − kBTx, (8.37)

in the first integral on the right. Our original integral now reads,

I(µ) =

∫ µ

0
dzϕ(z) + kBT

∫
∞

0
dx
ϕ(µ + kBTx)

ex + 1
− kBT

∫ µ/kBT

0
dx
ϕ(µ − kBTx)

ex + 1
(8.38)

Thus far we have made no approximation. In the following, we make two: (i) In the

degenerate limit, we have
µ

kBT
≈
εF

kBT
� 1, (8.39)

so that we can extend the integration in the last term of Eq. 8.38 to infinity; note that the

integrand of this term decreases rapidly with increasing x—this is why the upper limit

of that integral is irrelevant. We cannot do the same with the first term, for example.

We obtain:

I(µ) =

∫ µ

0
dzϕ(z) + kBT

∫
∞

0
dx

1
ex + 1

[
ϕ(µ + kBTx) − ϕ(µ − kBTx)

]
. (8.40)
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(ii) As a second approximation, we expand ϕ(µ± kBTx) in Taylor series about kBTx = 0,

again for the reason that the integrand decreases exponentially with increasing x as

well as that kBT � µ:

ϕ(µ+kBTx)−ϕ(µ−kBTx) ≈ ϕ(µ)+kBTx
dϕ(µ)

dµ
+ ... −ϕ(µ)+kBTx

dϕ(µ)
dµ
− ... = 2kBTx

dϕ(µ)
dµ

+ ...

(8.41)

Substituting to our integral, Eq. 8.42, we get

I(µ) =

∫ µ

0
dzϕ(z) + 2(kBT)2 dϕ(µ)

dµ

∫
∞

0
dx

x
ex + 1

. (8.42)

The second integral on the right can be evaluated by expanding (ex+1)−1 into a geometric

series (see Appendix 2 to IV.10.):∫
∞

0
dx

xp−1

ex + 1
=

(
1 −

1
2p−1

)
ζ(p)Γ(p). (8.43)

Then, for p = 2, ∫
∞

0
dx

x
ex + 1

=
1
2
ζ(2)Γ(2) =

1
2
×
π2

6
× 1 =

π2

12
. (8.44)

Using this result, we finally obtain for the low temperature (T � TF) expansion,

I(µ) ≈
∫ µ

0
dzϕ(z) +

π2

6
(kBT)2 dϕ(µ)

dµ
+ ... (8.45)

The above result is called Sommerfeld’s expansion. It is useful to calculate physical

observables of degenerate Fermi gases. For example, if ϕ(ε) = ε1/2, one needs to

substitute ϕ(z) = z1/2 and ϕ(µ) = µ1/2 in the above to obtain

I(µ) =
∣∣∣for ϕ(ε) = ε1/2

∣∣∣ =
2
3
µ3/2 +

π2

12
(kBT)2

µ1/2 . (8.46)

This result is used in the class to derive the expression for the chemical potential.

8.6 Pressure and entropy in statistics

The internal energy is given by

E =
∑

n

Enpn, pn =
1
Z

exp(−βEn).
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We know that En ≡ En(V). Therefore we change the volume quasistatically. We get

δEn =
∂En

∂V
δV.

An example would be a line of length L with En ∝ 1/L2. In general we have

δE =
∑

n

δEnpn +
∑

n

Enδpn =
∑

n

(
∂En

∂V

)
︸︷︷︸
−Pn

pnδV +
∑

n

pnδpn.

We see directly that the outcome of this variation is

δE = −
∑

n

pnPnδV +
∑

n

Enδpn = −PδV +
∑

n

Enδpn.

The first term is the same if V or V +δV. Therefore the second term must be responsible

for the relaxation and therefore for the ireversibility. Thus

∑
n

Enδpn = TδS, δE = −PδV + TδS.
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